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NOMENCLATURE

coefficients in turbulence models

friction coefficient

diameter or width of the channel

friction factor in law of the wall

mean and fluctuating components of variable f

buoyancy production/destruction of k = -8 g El_l¢7

buoyancy production/destruction of ﬁihuj =-8 (giuj o+ gy ®)
gravitational acceleration

step height

turbulence kinetic energy, 1/2 Tuj
mixing length

turbulence length scale

Nusselt number

pressure

Peclet number

Reynolds stress

Reynolds number

mean radius of curvature

turbulence Reynolds number

gradient Richardson number

flux Richardson number

curvature Richardson number

swirl number

mean velocity in x, y, z directions
fluctuating velocities in x, y, z directions
mean velocity component in x; direction

fluctuating velocity components in x; direction

iv




Heff

Yt

Ok> O¢

friction velocity

Cartesian coordinates

coordinate in tensor notation
reattachment length

dimensional distance, y UT/V
volumetric expansion coefficient
circulation, equation (53)

false diffusion

Kronecker delta

dissipation rate of turbulence energy
subgrid scale Reynolds stress

polar coordinate

von Karman constant

dynamic viscosity

effective dynamic viscosity (u + ut)

kinematic viscosity

fluid density

turbulent Prandtl number for diffusion of k and €
turbulence shear stress

wall shear stress

fluctuating scalar quantity

stream function

vorticity (egs. 53, 55, and 56), time-mean square vorticity fluctuations (egs. 7 and 10)



TECHNICAL PAPER

A CRITICAL EVALUATION OF VARIOUS TURBULENCE MODELS
AS APPLIED TO INTERNAL FLUID FLOWS

. INTRODUCTION

Turbulence is one of the unsolved problems in the area of physical sciences. It is believed that
the solution of time-dependent three-dimensional Navier-Stokes equations can describe turbulent flows
completely. However, the computers are not large and fast enough to solve the equations directly, for
the required range of length and time scales, even for simple flows. Many industrially important flows,
such as the flow in a space shuttle main engine, are quite complex. Hence, it is of practical importance to
describe turbulent motion in terms of time averaged quantities rather than instantaneous, This kind of descrip-
tion leads to the well known turbulence closure problem [1]. Substitution of apparent mean (Reynolds)
stresses for the actual transfer of momentum by the velocity fluctuations increases the number of
unknowns above the number of equations. The problem is then to supply the information missing from
the time-averaged equations by formulating a model to describe some or all of the six independent
Reynolds stresses, —p uTuJ The exact Reynolds stress transport equations can be derived from the time-

dependent Navier-Stokes equations [2]. These equations express the conservation of each Reynolds stress
as the Navier-Stokes equations express the conservation of each component of momentum. In turbulence
modeling one uses a finite number of Reynolds stress transport equations with the supply of missing
information from experimental results. The time-averaged scalar transport equation contains the turbulent
heat or mass flux, -p JiT;S, where ¢ is the fluctuating scalar quantity. One has to model this term to solve

the scalar transport equation.

First order closure or mean velocity field closure expresses the Reynolds stresses as a function of
the mean velocity field. Closure of the Reynolds stress transport equations requires third-order mean
products of velocity fluctuations to be expressed in terms of second-order mean producis {the Reynolds
stresses themselves) and is known as second order closure or Reynolds stress closure.

First, this report describes the equations of turbulent flow, and then the turbulence models which
are often used in engineering calculations. Then it discusses the application of the models and their per-
formance in internal flows which are of particular interest here. Internal flow encompasses a wide range
of flows and can be extremely complex. It includes fluid flow in pipes, passages, ducts, conduits, and in
components such as bends, diffusers, and heat exchangers. Like a majority of all turbulence researches,
the report deals with incompressible flows.

Il. EQUATIONS OF MOTION

If the flow variables are assumed to be of the form f =f+f where [ is the mean value of f
and f’ is the fluctuation about the mean, one can obtain the time averaged continuity and momentum
equations [2,3]

aui
— =0 1
o ()
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where Rij = tTuJ , the Reynolds stress. In order to establish a turbulence model that is less complicated
than the full equations, it is necessary to establish a way of evaluating Rij in terms of the variable
u; , higher-order turbulence statistics and some constants evaluated from experimental data. The various

turbulence models employed for the closure of the mean equations are discussed next.
iH. TURBULENCE MODELS

The numerical procedures which are associated with turbulence models to make complete calcula-
tion methods can be divided into integral and differential types. Differential methods involve direct

assumptions for the Reynolds stresses at a point and seek the solution of the governing equation in their
partial differential equation form.

Integral methods involve the integral parameters of the shear layer momentum thickness, shape
parameter, skin friction coefficient, etc. One solves a system of ordinary differential equations (for two-
dimensional flows), whose dependent variables are the profile parameters and independent variable is x;
in three-dimensional flows, the equations are the partial differential equations in the plane of the layer.
The important distinction between calculation methods is the type of turbulence model rather than the
type of numerical procedure.

The advantage of differential methods is that the restrictions and inaccuracy that arise from the
need to paramecterize the velocity profiles are avoided. Differential methods introduce substantially more
detailed information about turbulence. Here modeled forms of governing equations and the correspond-
ing closures for the differential methods are described.

The turbulence models can be classified in several ways. The one most often used is that arranged
in order of the number of differential equations solved in addition to the mean flow equations [4]

(I  Zero equation models
(II) One equation models
(I1) Two equation models
(IV) Stress equation models

Most of the models, classes (1) to (I1I), use Boussinesq eddy viscosity model. Bradshaw, et al. [5],
however, assume the constancy of the 7/pk ratio, in boundary layer flows. Here 7 is the shear stress and
k is the turbulent Kinetic energy. It is important to note here that in this case the mean momentum and
continuity cquations form a hyperbolic system in contrast to the parabolic system obtained with the use
of eddy viscosity models [6]. Other models which do not use the eddy viscosity assumption (class 1V)
obtain the Reynolds stress from a differential equation.

9]




Zero equation model, which uses only the partial differential equation for the mean flow field
and no transport equations for turbulence quantities, is also called “mean field” closure [7]. The classes
(II) to (1V) are called “transport equation” closures. Yet another classification is based on the highest
order of velocity product for which a transport equation is used. Zero equation models use partial differ-
ential equations for the U; only and are therefore “first order” models. Classes (II) to (IV) use partial

differential equations for w:u; and are “second order” closures, while some class (IV) models use transport
ity

equation for third order products iUy [4].

Bradshaw [8] describes the interplay between the development of models and the experiments.
The monograph by Launder and Spalding [9] gives the mathematical concepts of turbulence models.
Bradshaw and Cebeci [10] describe the calculation methods for various classes of turbulent flows.
Gosman, et al. [11] present various aspects of computation of recirculating flows. They form the basis
of many of the current turbulent flow computational schemes. Several reviews have appeared recently
concentrating on specific aspects of turbulence modeling [12 to 21]. This report concentrates on the
turbulence models and their applications to internal flows. In the following, the main classes of turbu-
lence models are described briefly.

3.1. Zero Equation Models

Zero equation models are mostly based on the eddy viscosity concept. This concept stems from
the convenience associated with maintaining an approach, for turbulent flows, which is similar to that
for laminar flows. This convenience of concept is coupled with the possible mathematical convenience
of retaining the same form of differential equations for laminar and turbulent flows and allowing the
use of the same solution procedure.

The first turbulence model proposed, the Prandtl’s mixing length hypothesis, is still among the
most widely used models. It employs the eddy viscosity concept which relates the turbulent transport
terms to the local gradient of mean flow quantities. For example, for thin shear layers

v = - 3
uv Vtay 3)

where

vt = eddy viscosity.

The Prandtl mixing length hypothesis calculates the distribution of eddy viscosity by relating it to the
mean velocity gradient

oU
0= Cyly? | ‘ )
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This relation involves a single unknown parameter, the mixing length lm whose distribution

over the flow field has to be prescribed with the aid of empirical information. C# is a constant. The

mixing length model has been used for thin shear layers and wall boundary layers [16]. The main draw-
back with this model is the evaluation of 1, for different flows. The evaluation of 1, becomes difficult

for recirculating flows and three-dimensional flows. In the already empirical specification of the mixing
length, it is difficult to incorporate in any useful manner, the effects of curvature, buoyancy or rotation.
The transport and history effects of turbulence are not accounted in the mixing length model. The more
generally applicable models to be described below account for these effects by introducing transport
equations for turbulent quantities.

3.2. One Equation Models

The one equation model requires the solution of an equation for the turbulent kinetic energy, K,
and, as a result, allows for its transport. The turbulent kinetic energy equation can be derived from the

Navier-Stokes equations [12]. The eddy viscosity is modeled by »; = C,u k"2 1. The length scale 1 is

specified algebraically and hence is flow dependent. This approach is not very popular since it performs
only marginally better than the zero equation model.

3.3. Two Equation Models
This class of models is the one widely used in present day engineering calculations. In attempts
to eliminate the need for specifying the turbulence length scale as a function of position throughout the

flow, a second differential equation which in effect gives 1 has been used.

In general, one looks for an equation for a quantity that is a combination of k and 1, Z = k& lﬁ.
Such an equation can also be derived from the Navier-Stokes equations. It has the form [12,22],

2
Z 9 |[Ht oz Kt [aU k
= —|—=] +z|]C; = | =) -G, pP—]| +5, . )
t 9y \o, dy k \dy Ky

Here 0, 1s a Prandtl number for the diffusion of Z, S, is a secondary source term which appears in some

o

p

o

models, and Cy and C, are constants.
The Imperial College group lead by Prof. Spalding has experimented with three different kinds

of two equation models [21]: k-kl; k-w, and k-e. | is a length representing the macroscale of tur-
bulence which may be defined in terms of k, € and a constant CD through

1=Cp k3/2/e (6)

w 1s a quantity having the dimensions of (timc)'2 which has been interpreted as representing the time
average square of the vorticity fluctuations, and it can also be defined in terms of k, € and (‘D.




w = €2/(Cpk)? (7)

and e is defined by

oy, ouy
axk 8xk ( )
The above definitions imply that

dkl 5/ dk de ©)
kl k €
d dk de
WX (10)
w k €

With the aid of these equations, it is possible to transform one pair of equations into another [21]. Thus,
the three models differ only in the mathematical form but not in content. However, the k-e model has
become most popular because of the practical advantage that the e-equation requires no extra terms near
walls. Also, € itself appears in the k-equation and the € equation requires no secondary source term.
Hence, only the k-¢ model is described in detail here.

The k-¢ model employs the eddy viscosity and relates the eddy viscosity to k and e. One solves
two differential equations, one for turbulent kinetic energy and the other for its dissipation. The modeled
equations for k and € are given below [21]:

(a) Kinetic energy equation:

Dk 1 o [ ok uy (OU; AU\ ay;
—-_ 22 = + e . an

Dt P an Uk an P an aXl an

(b) Kinetic energy dissipation rate equation:
De 13 [Hoae ] Crte U k) i c ¢2 a2
t »p axk o axk ok \oxy axi axk 2k

ue=Cyp ke . (13)




The constants in these equations have been found to take the following values [211.

Cy= 0.09
Cy =144
Cy =192
o, = 1.0
0= 1.3

The coefficients are constants in the sense that they are not changed in any calculation. However,
these constants need to be changed in order to accommodate the effects such as curvature, low Reynolds
number, near wall, etc.

Close to the walls, the local Reynolds number of turbulence is small and the molecular transport
becomes important. To resolve the wall layer properly in a numerical solution procedure one requires an
extremely fine mesh near the wall. Fine mesh size increases the computational time by an order of
magnitude. Hence, most computational schemes avoid it by using the wall function to bridge the whole
of the wall layer to the fully turbulent region. The first computational point p near the wall (Fig. 1) is
to be located in the fully turbulent log-law region. The momentum flux at such a point p satisfies the
relation [21]

1/2 1/2
_U_p__c 1/4 1/3:_1-1“ Ey (M) ) (14)
(r/p),, M p K p v

Here Up is the velocity of the fluid at the point p along the wall and Tw is the shear stress at the wall
in the direction of Up. The quantity kp, the value of k at the grid point P, is computed by assuming

that the generation and dissipation of energy are equal in the wall layer where the shear stress is uniform
and the length scale is proportional to the distance from the wall. The quantity E is a function of wall
roughness and is equal to 9 for smooth walls. Extensive accounts of wall functions and their manner of
application are discussed in References 11 and 21. Recent formulations of near-wall treatments are

discussed in Section IV,
P x

Yp

NV RN

Figure 1. The near-wall model.




3.4 Reynolds Stress Models

The two equation models which have been extensively used in engineering calculations have
several limitations, The main practical limitation is the assumption of isotropic eddy viscosity. The same

values of v, are taken for different’ u1 ; terms. The effects of curvature, rotation and buoyancy forces

have to be modeled separately. In the models discussed so far the local state of turbulence is assumed

to be characterized by one velocity scale \/' The individual u; u] is related to this scale. In actual flows,

the scales may develop quite differently. In order to account for the different development of the
individual stresses, transport equations for u have been introduced. These equations can be derived in

exact forms but they contain higher order correlatmns that have to be approximated in order to obtain
a closed system. In this model one needs to solve the equation for the turbulence energy dissipation rate
€, in addition to those for 'ul_u3 for the length scale. A particular advantage of the Reynolds stress model

is that terms accounting for buoyancy, rotation and other effects are in principle introduced
automatically. However, many problems arise in the solutions of the model equations as discussed below
and in Section 3.4.1.

Models employing transport equations for uluJ are called second order closure models. Several
closure schemes have been proposed. The well tested one is that of Launder, et al. [23].

Launder et al. proposed the following model transport equations for 1?1}

E)uluJ aTuj 5 K BLTile . E)Uj . aU;
+ U =Co — | —wyy -, — - uu, ——
at 3x ax; \e Xy Ulax, 11 ax
I — e —" —— gy
Convective Diffusive b = stress production
Transport Transport
e [— 2 ) 2 \ 2 \
Pressure Strain
2 ) 15
—B(giuj¢+gjui¢)—§e i (15)

Viscous Dissipation

Gﬁ = buoyancy production.

The rate of change, convective transport, and mean field as well as buoyancy production terms
are exact whereas the diffusion, pressure-strain/scrambling, and viscous dissipation terms are model
approximations. The diffusion fluxes of ﬁl_uJ have been expressed by simple gradient diffusion models.

Local isotropy has been assumed to prevail so that the dissipation is the same for all the three normal
components (and thus 2/3 of the total dissipation €) and, so that the viscous destruction terms for the
shear stresses are zero. The most important assumption concerns the pressure-strain/scrambling terms,



since for shear stresses these are the main terms to balance the production of these quantities. The
pressure-strain/scrambling model consists of three parts. The first one represents the interaction of
fluctuating components only, the second the interaction of mean strain and fluctuating quantities and the
third the effect of buoyancy forces. Several versions of the pressure strain model have been proposed to
correctly predict the experimentally observed results. To account for the wall damping effects a wall
correction must be introduced in the pressure-strain model. Launder et al. make the empirical constants

in the pressure-strain model a function of the relative distance from the wall, 1/y « K3/ 2/((:y). Because

of the complexity and the large amount of computational efforts required, the model has not been as
widely used as one would like it to be.

3.4.1 Invariance and Realizability of Reynolds Stress Models

Turbulence models should be broad based so that they can be applied to most practical problems
without “tuning.” The Reynolds stress models come close to this ideal, since they account for more
physical processes such as those due to curvature, rotation, buoyancy, etc. automatically. For general
applicability, these models have to satisfy many constraints [17]. Of these constraints, tensor invariance
and realizability seem to be important. The first one requires that the replaced terms have the same tensor
form as the original terms. This will ensure that they transform properly in different coordinate systems.
Such type of modeling is called invariant modeling [20]. The second constraint, realizability was first
introduced by Schumann [24]. This condition requires that the equation for turbulent stresses have
the property that all component energies remain non-negative and all off-diagonal components of
Reynolds stress tensor satisfy Schwartz’s inequality. These and the additional condition put forth by
Schumann are written in a numerically most convenient form [24]:

(16)

: a7
2

Ryt (Ryy Ry3-Ryz) =Ry (Ryp Ryz - Ry Ryz) + Ry3 (Ryp Ryz - Ryy Ryz) =0 . (18)

Similar conditions apply for scalar fluxes. Schumann shows that the exact Reynolds stress
equations satisfy the realizability condition. He also indicates the nonrealizability of some of the existing

models. However, attempts to satisfy realizability conditions lead to invariably complicated model
expressions [14]. Hence, at present no special efforts are taken to see that model equations satisfy
realizability conditions. Care must be exercised in implementing and interpreting these models.

3.5 Algebraic Stress Model

In Reynolds stress models, there are differential transport equations for each component of u_llTJ

in addition to € equation. To reduce the computational effort, Rodi [25] proposed an algebraic relation
for calculating the Reynolds stresses. The convection and diffusion terms in the transport equations of
uju; are replaced by model approximations, reducing the equations to algebraic equations. Rodi assumes

that the transport of ruj is proportional to the transport of k and that the proportionality factor is

l-l_iaj/k. With this approximation incorporated, the transport equations yield algebraic expressions for




Uil that contain the various production terms appearing in the ?uj equations. Thus the gradient of
mean flow quantities, k and € appear also in the expressions, so that k and e equations have to be added

in order to complete the turbulence model. The algebraic expressions together with k and € equations
form an extended k- model.

Algebraic stress models are suitable whenever the transport of ﬁl—ﬁj is not important. Algebraic

stress relations are basically like eddy viscosity formulations [15} and therefore are not applicable to
cases where countergradient transports occur (Section VII). On the other hand, all effects that enter the
transport equations for @j through the source terms for example, body force effects (buoyancy, rotation

and streamline curvature), nonisotropic strain fields and wall damping influence can be incorporated.
Algebraic stress models can therefore also simulate many of the flow phenomena that were described

successfully by stress equation models.

3.6 Multiple-Scale Models

All the turbulence models discussed so far are based on the assumption that in all the flow situa-
tions each variable has a spectrum of universal form which can be characterized by the scales of the
energy containing range. Difficulties arise when the spectrum is not an equilibrium one or when the flow
exhibits distinctly different ranges of scales. Complex models have been devised to predict such flows
[17]. The model of Hanjalic, et al. [26] appears to be a tractable and useful one. They split the spectrum
into a large scale part and a small scale part with different time scales for transfer into the large scale
part and transfer of the large scale part to the small scale part. A brief description of their model is given
below.

The turbulence spectrum consists of independent production, inertial and dissipation ranges.
K denotes the wave number above which a significant mean strain production occurs while K5 is the

largest wave number at which viscous dissipation of turbulence is unimportant (Fig. 2). Energy leaves the
first region (production) at a rate e, and enters the high wave number or dissipation region at a rate e.

\

€p

€T

ENERGY SPECTRAL DENSITY

K1 K2
WAVE NUMBER

Figure 2. The spectral division for multiple scale model [26].



Between the two regions, occupying the intermediate range of wave numbers is the transfer

region, across which a representative spectral energy transfer rate €T is assumed. This simplified energy
spectrum is the basis of Hanjalic et al.’s model.

The total turbulence energy k is assumed to be divided between the production range k., and the
transfer range ky. At high Reynolds numbers there is negligible kinetic energy in the dissipation range.

In a homogeneous flow the levels of kp and ky are controlled by the transport equations,

Dk, v,

—Bt— = - luj a - EP > (19)
Py

Dk

W = p - € s (20)

where Py denotes the production rate of turbulence energy by mean shear which is assumed to be

contained in the wave numbers below K- The following equations have been proposed for characterizing
the evolution of these transfer rates.

|

DGI 61 612
5o - Cet Pk 77 Cea v Cea A+ Dy 1)

The quantity “A’ refers to the turbulence anisotropy defined as

T T 2

with Cel’ Ce2 and C€3 are constants determined from experiments, Del denotes the diffusive transport
[equation (21) is for single scale model]. Equation (21) makes the local rate of €1 dependent on the local

mean strain rate and the anisotropy of the stress field neither of which under conditions of local isotropy

can directly affect the dissipation rate. Equation (21) may be regarded as a spectral energy transfer asso-
ciated with large scale interactions. The proposed €p equation is:

D(:‘p €p €P2
=Cpy Pp —~-Cpy—+D

ep (22)

where the partioned encrgy kp replaces the total energy giving, as the characteristic time scale, the turn-
over time of the large scale motions. Cp and Cpy are constants.

10




The proposed form of the et transport equation is

2
De EpE €
T P*T T
—_— —Cqny —+ D 23)
Dt Tl T2 5 " ey (23)

Cry and Cy, are constants determined from experiments. Energy dissipation rate now responds only

slowly to the applied mean strain. This feature makes the form (23) more capable of representing the
rapidly changing fields than equation (21). Hanpjalic et al. computed the self-preserving plane and
axisymmetric jets with this model using simple turbulent viscosity hypothesis for the shear stress T¥v.
They obtained very good agreement of the spread rates of the jets with the experimental values.

We have given here a brief account of various turbulence models along with their main features.
Second order models and the models for two phase flows are not considered here. In the next section
we discuss the corrections made to the widely used two-equation model to extend its applicability.

IV. MODIFICATIONS TO k-e MODEL

Of all the models discussed in Section III, the two-equation, k- model has been widely used to
predict various classes of flows of engineering importance. It has been used for predicting flows with
heat/mass transfer, streamline curvature, etc. These effects have been accounted for by correcting the
model equations, The low Reynolds number modification, wall-layer models and the streamline curvature
corrections are discussed here.

4.1 Low-Reynolds Number Model

Jones and Launder [27] extended the k-e modcl to low-Reynolds numbers so that the turbulence
model equations can be valid throughout the laminar, transition and fully turbulent regions. In this
version of the model, k and € are determined from the following pair of equations.

B 2
De _1 3 |fH de e by OUj (OU; AU\ Cye? vy (97U
= (=) = |t i 22+ 2 )- 220 — (24)
Dt »p axj Oc axj k p axj axj 9x; k 0 ij 9x)

i 2
Dk # d koo, 9V 9T akl/2
Dk 12 |f# ok +__la(_1+5_1 s . 05)
Dt »p axj ok ij P 8% 8xj X; 9%;

In these equations, Cy, o and o, retain the values assigned to them for high Reynolds numbers while

C# and C, vary with turbulence Reynolds number.

C“ = Cyoo exp [-2.5/(1 + R{/50)1 (26)

11



Cy = Caoo [1 - 0.3 exp (-R(2)] Q7)

subscript oo refers to fully turbulent values. We note here, that the laminar diffusive transport becomes
of increasing importance as the wall is approached and the extra destruction terms included are of some

significance in the viscous and transitional regions. The term 2.0 vu;/p (azUi/axjaxl)2 in the e equation

produces satisfactory variation of k with distance from the wall. The measurements indicate that the level
of energy dissipation rate is constant in the immediate neighborhood of the wall. In the computations €

is set to zero at the wall and an extra term, -2v (Eil(l/z/axj)2 is introduced to the k equation. This extra

term is exactly equal to the energy dissipation rate in the neighborhood of the wall.

4.2 Near-Wall Models
4.2.1 Two-Layer Model of Chieng and Launder

Detailed modeling of the near wall region is necessary for better prediction of the flow field.
Recently Chieng and Launder [28] introduced detailed near wall modeling in their computation of flow
in a pipe expansion. Their model is briefly discussed here. Figure 3 shows a scalar node P whose
associated volume is bounded on the south side by a wall. The near wall flow is treated as viscous (but
not laminar) out to a distance y,, from the wall and fully turbulent beyond this. The sublayer thickness

Yy is such that the Reynolds number vy, kvl/2,’ v (= R,) is constant, taken equal to 20. The near wall

cell is large enough that the node P lies outside the viscous sublayer. Over the fully turbulent region
the mean velocity parallel to the wall is assumed to vary with the distance from the wall according to

L 12
uk /2 e Y 28
v /(TW/P)—F n Y (28)
N YN | /
o--}-- | /
Yn /

_—ti - \4
VISCOUS Pe P
SUBLAYER — Yv N !

.
A A

SN kp kny w

NEAR-WALL CELL TURBULENT KINETIC TURBULENT SHEAR
ENERGY STRESS

Figure 3. Near-wall two-layer model.
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An expression for Tw Can be written in terms of Up:

T, = ;
Y mE* yp k2

The equations (28) and (29) are the same as the low Re version of Launder and Spalding [21] except
that the kinetic energy term is evaluated here, at the edge of the viscous sublayer, rather than at node P.
The k* in equation (28) is proportional to the von Karman constant k. In local equilibrium, where

-1/2

k = (TW /p) C oo the velocity relation should reduce to the conventional logarithmic law:

] \AVAC D)
U/\/T_V;/_'=-IzlnE——V— . (30)

The limiting form is achieved by taking K* = Kk CMMI/4 (0.23) and E = E* C“w'1/4. The constant E*
can be evaluated in terms of Ry by noting that within the viscous sublayer the velocity displays a linear

variation which may be written as

Uk 12yl

(TW/P) T

Aty we find that E* = exp (k* RV)/RV. Thus for the assumed values of k* and R, E*=5.0.
‘The linear variation between the node P and its neighbor (point N) is used to exirapolate to the

viscous sublayer (i.e., k, in terms of kp and k- Within the viscous sublayer a parabolic variation of
kinetic energy is assumed.

- 2
k=k,vly )" . (32)

This corresponds to the linear increase of the fluctuating velocity with distance from the wall.

The dominant contribution to the energy generation rate is the term T ou/dy, the 7T is the local
shear stress. The mean generation rate per unit volume is

Yn

ouU
ly, f [ry + (1, = Ty) Y1y P dy . (33)
yV
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Using equation (30) for the mean velocity distribution

Mean generation rate =

2
Yn p K* kvl/“ Y

Unlike the generation, the dissipation rate of turbulence energy is not zero in the sublayer. It is constant
equal to 2v (akl/z/ay)z. Using equation (25) we obtain

5 : (35)

The mean value of the dissipation rate can be obtained by integrating (35) between y,, and Yy

4.2.2 Two- and Three-Layer Models of Amano

Amano’s near wall model [29] is the same as that of Chieng and Launder, except for the treat-
ment of the generation and destruction terms in the € equation. In Reference 28 the value of € in the
near wall cell was approximated under local equilibrium condition. Amano develops the treatment of
the € equation near the wall cell, taking into account that the value of € near the wall is an order of
magnitude larger than that in the fully turbulent core, and reaches its maximum at the wall. Each term
in the € cquation should be evaluated in accordance with the k equation rather than approximated
under local equilibrium conditions. He has considered both a two layer model and a three layer model.
In the two layer model the region is divided into two distinct parts: a viscous sublayer region (0 < y+ <
11) and an overlap region (11 < y+ < 400). The € equations for these regions have been developed [29].

In the three layer model he tries to approximate the experimental velocity profile more closely
by dividing the near wall region into three layers: a viscous sublayer (0 < yJr < 5) adjacent to the wall;
a buffer layer (5§ < y+ < 30); and an overlap layer (30 < y+ < 400) (Fig. 4).

Ne---- YN
Yn
y
Pe--- P
YB
BUFFER LAYER { N 7
VISCOUS = Yv T M d
SUBLAYER WALL

kv kBkP kN €N EP €V w8 'n
{a) WALL ADJACENT CELL (b) TURBULENT KINETIC (c) ENERGY DISSIPATION (d) TURBULENT SHEAR STRESS
ENERGY RATE

Figure 4, Near-wall three-layer model [29].
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He assumes the following variation of k, € and 7 in the three regions:

Viscous Sublayer 0 < y+ <5

k=k, (v/yy)?

axl/2 2
€=2v

ay

r=0 . (36)

Buffer Layer (5 <yt < 30):

k=kgvlypg
€= k3/2/C1 y
_ 3
=18 (y/yp) (7
Fully Turbulent Region (30 <y' < 400):
k. -k kp -k
B P

k:-n_—y-{-((l)———iyl)) =by+a

Ya~YB Yp - YN
€= k3/2/C1 y
T=1 t (1, - TW) v/¥q (38)

where
_ kp - kN
a=kp-———vp
Yp- YN
o kB
Yn ~ YB

He obtains the mean generation and destruction rates for k and € equations, incorporating the above
relations. He claims to obtain better results with these near wall models, the three layer model being

superior to the two layer one.
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The near-wall models of Amano and Chieng and Launder have been useful for improving the
prediction of wall heat transfer rates. However, it appears that these models do not improve significantly
the flow field predictions. For example, the models have little effect on the prediction of the location
of the reattachment point [28] (also, see Section V).

4.2.3 PSL Approach

In an attempt to model the physics of near wall region, lacovides and Launder [30] have recently
proposed a numerical scheme which employs the classical boundary layer assumption for the thin wall
layer and eliminates the use of wall functions. In this approach a thin parabolic sublayer (PSL) near the
wall is assumed across which static pressure variation is either negligible, or if the surface is highly curved,
can be obtained assuming radial equilibrium. The PSL is taken to extend over the whole low Re region
where the transport coefficients vary by orders of magnitude. A fine computational grid treatment for
this layer eliminates the use of wall functions. In PSL approach no pressure need be computed or stored
at the grid points within the layer and the velocity component normal to the wall at these node points
are obtained by cell continuity rather than solving the normal momentum equation. lacovides and

Launder employ a staggered arrangement of dependent variables as shown in Figure 5, and the normal
component of velocity evaluated from

V(1)) = [UG-1,0) - U1, )] 8y/éx + V(I,J-1) . (39)

® PRESSURE NODE

A v _ VELOCITY OBTAINED
‘ ° » FROM Y— MOMENTUM
EQUATION
* G V — VELOCITY OBTAINED
ELUPTIC FROM CONTINUITY
REGION

I

B v - VELOCITY

1f ]
. §x i
SV (1,9
U (1-1,d) = U (1) PSL
dy
A~V (1L-1)

I
»

SIS S S S STSSSSSS

Figure 5. PSL approach [30].
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The PSL approach has been successfully used for computations of flow and heat transfer in a
pipe expansion, in a spirally fluted tube and in a 90 deg tube bend by Launder [31]. It has been
found that the PSL approach is not only as economical as the wall function approach to obtain grid
independent solutions, but also produces more realistic solutions. For example, in the flow in a pipe
expansion, the PSL approach reveals a secondary recirculation region, not produced by the wall function
method, for high expansion ratios {31]. The secondary recirculation region accounts for the Nusselt
number variations downstream of the expansion observed in the experiments.

4.3 Curvature Effects

An exhaustive review of the subject and many insights into the effects of streamline curvature
on turbulence and ways of incorporating into the turbulence models were provided by Bradshaw [32].
Large changes in Reynolds stress observed in the curved flow experiments cannot be accounted for by
the extra terms appearing in the mean flow and Reynolds stress transport equations. Streamline curva-
ture causes large changes in higher order quantities (second order) of the turbulence structure. Effects
are similar when the streamlines have a component of curvature in the plane of mean shear irrespective
of the cause of the curvature, caused by surface curvature or swirl or rotation of the whole system.
Since the models can recognize only the explicit extra terms due to curvature in the mean motion and
turbulent transport equations, they will severely underpredict the effects. Hence, the models have to be
modified to account for the curvature effects.

Modifications to the k-e model have been made to incorporate the streamline curvature caused
by surface curvature as well as by swirl or rotation. The modification of the length scale suggested by
Bradshaw is employed in most computations. It is made a linear function of the curvature Richardson
number. Another way of incorporating the curvature effect is through the modification of C#. For the

convenience of discussions on model predictions in Section V, the modifications employed in the flows
with surface curvature and in the flows with swirl are given here separately.

4.3.1 Flows with Surface Curvature

Gibson [33] derived a set of algebraic stress equations from which the effect of curvature on
mixing length and turbulent Prandtl number can be obtained. His analysis was, however, limited to
moderate curvatures. Following the idea of Gibson, Pourahmadi and Humphrey [34] studied the
effect of curvature for any arbitrary curvature. They obtain a general expression for C# by equating the

algebraic expression derived for ugu, with the Boussinesq approximation for ugu, in which p, is given
by

wlp = €y (3/2/e) i1/

They use the expression derived for C# in the k-¢ model equations. The variation of C“ for a curved

channel obtained by them is shown in Figure 6.

The figure shows the variations of C# as a function of radial position in channels of different
curvature. In general, C# is seen to increase at both walls of a curved channel at a rate inversely propor-

tional to the channel curvature (RC/D). For strong curvatures they obtained unrealistic values of the
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parameter in the region 0.3 < r < 0.65 due to the lack of consistency of the ratio ﬁi—uj/k. They used the
fixed values of C# = 0.09 in the region 0.3 <r < 0.65.

(SYMMETRICAL

Re = 148,400

m R./D B
05 \ 795 10 _— 4

o 10 ——

0 20 — -

256 20 —_—--—

0 100 ----—

o 108 -

1 1 A 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Surface curvature: geometry and variation of C,, for fully developed
curved and straight channel flow [34].

The relative importance of wall curvature and wall pressure fluctuations on CM have been shown
by two sets of C# profiles (RC/D = 10 and 20) with imposed (m=0) symmetric wall functions of f

equivalent to the straight channel flows in so far as the wall pressure corrections are concerned, while
retaining the direct influence of wall curvature on C#. The C# profiles show that, the curvature at the

concave wall acts to enhance while the curvature at the convex wall acts to suppress it. The inclusion

of wall pressure corrections in the pressure strain (m = 2.56 and m = 7.95) further increases C# at both

the walls, but at the convex wall the direct influence of curvature effects ultimately dominate the wall
pressure contributions to C# causing a net decrease in its value with increasing distance from the wall.

Launder et al {35] introduce corrections to the length scale determining e-equation to account

for curvature effects. The constant C, is made to depend on the gradient Richardson number defined
as

- . 40
1 ezf)ar ()

They solve the following form of k-e equations in addition to the mean flow equations for two dimen-
sional curved duct flows.
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The new constant introduced CC for curvature varied from O to 0.5.

(42)

where

The influence of curvature can also be accounted for by modifying the velocity scale. Since
velocity scale effects are included in k-equation such modifications have not been very useful [36-38].
Lilley [39] includes the effects of curvature in kl equation by an additional term in his k-kl two equa-
tion model.

4.3.2 Flows With Swirl

For flows with swirl, the k-e model is varicd in a simple way by introducing corrections to the
length scale determining e-equation. There are two corrections in use. One is to modify the constant
C2 appearing in the sink term and the other is to modify the constant Cl appearing in the source term

of the e-equation, by relating them to the Richardson number. However, the form of the Richardson
number used in the two cases are different. The term Co is corrected using the gradient Richardson

number R, given by equation (40) [40,41,35]. For example, Launder et ai. {29] replace Cy by

C,=192(1-02R) . (43)

Srinivasan and Mongia [41] split R; into two parts: (i) swirl Richardson number, equation (40), and

(ii) curvature Richardson number defined below, in an arbitrary way. They represent C2 as

Cy = 1.92 exp (204 R; + 2o, Ryo) (44)

av
Ric=\/ U2 + v? /Rc[lga—(rU)+ ] (45)
T T

ax
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where the radius of curvature is given by

UV {1/r 8/dr (rU) - (dU/0x)]

R =

(46)

The values of o and « were arrived at by parametric studies, to be o =-0.75 and o, =-2.0.

Rodi [42] is probably the only one employing the correction to Cl by relating it to the flux
Richardson number R¢

oW/r
2W
or
R, = - @7
' au)3 (av)2 (v 21 (au av)2 aw)2 a (W)]2
ot—) +{—) +{- +—+—] +{—]) + |r=1{—
0x or r or  0x or or \r
He represents Cl as
C; =144 (1 +09Rp) . (48)

This form of correction has been found to produce the destabilizing effect of rotation on turbulence
in swirl flows correctly. The use of R¢ is to be preferred for flows with swirl for the following reasons:

(i) It represents correctly the effect of rotation on turbulence.
(i) It is the only suitable parameter for three dimensional flow analysis.

(iii) It reduces to gradient Richardson number when the curvature is small.

The curvature effects may, however, be taken care of automatically, if one uses transport equations for
turbulent shear stresses.

The applications of the various turbulence models and the model varients discussed here to
internal flow predictions are discussed in detail in the following section.

V. APPLICATIONS OF TURBULENCE MODELS TO THE PREDICTION
OF INTERNAL FLOWS

The geometrical configuration, the fluid and the flow rate all determine the complexity of the
flow. For any combination of these factors, one is interested in a prediction method to obtain informa-
tion on pressure drop, flow pattern, temperature distribution, etc. This paper is concerned here with
the computation of turbulent flows via the solution of time averaged Navier-Stokes equations for a set
of flows of engineering interest. Turbulence closure models and their prediction capabilities will be
considered. In the 1981-Stanford conference on complex turbulent flows [43] several isothermal flows
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of engineering interest were computed and compared with carefully compiled experimental data. This
included a number of confined flows, which they classified into two groups: (i) attached flows and
(ii) separated flows. Here, the application of turbulent closure models to a selected set of flows of
interest is discussed and the performance of the models is evaluated.

Precise comparison of the performance of closure models is difficult because of the difference
in numerical schemes used. Turbulence models and numerical methods are considered independent ele-
ments of the total turbulent flow computation. In principle, one can solve any set of turbulence model
equations with any numerical method. In practice, when the agreement between the computed and
experimental results is not so good, one is not sure where to put the blame; i.e., turbulence model or the
numerical method; many tend to blame the turbulence model, because of the faith in their numerical
method. Hence, an evaluation of the turbulence closure models rests mainly on their predicted flow
quantities of engineering interest (such as the size of the recirculating flow, profiles of velocity, pressure,
kinetic energy, etc.) and their closeness to the experimental or expected results.

In this section, an attempt is made to catalog recent applications of turbulence models to con-
fined flows under the following classes:

5.1 Plane two-dimensional computations
(a) Backward facing step flow
(b) Symmetric expansion
(c) Flow over a square obstacle.
5.2  Axisymmetric two-dimensional computations
(a) Flow in a sudden pipe expansion
(b) Diffuser flows
(¢) Flows with curvature and swirl
5.3  Three-dimensional computations
Non-circular duct flows
In each class, the predictions by various turbulence models are compiled and the major predicted
quantities are compared. Some observed discrepancies between the prediction and experiment are
discussed.
5.1 Plane Two-Dimensional Flows
5.1.1 Backward Facing Step Flow
The flow over a backward facing step (Fig. 7) was a bench mark problem in the 1981-Stanford
Conference: flow No. 0421. The results of different turbulent models [44-50] are briefly reviewed here.
Since we are interested in the recirculating flow, some special methods (which do not solve an elliptic
equation) adopted for this problem are not included here. Recent results of Ilegbusi and Spalding [51],

Nallasamy [52] and Syed et al. [53] are also included. Table 1 lists the turbulence models used by
different authors and some observations.
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Figurc 7. Flow over a backward facing step: predicted separation length, Xp.

A useful parameter for comparison in backward facing step flow is the length of the recirculation
region xp. Figure 7 gives the reattachment lengths predicted by different computations. The experi-

mentally observed value of xp is (7.020.5) step height [54]. Standard k-e models underpredict the

reattachment length by as much as 20 percent. Modified k-e models [49,51], algebraic stress model [47]
and Reynolds stress model [SO] predict recirculation length fairly well. Demirdzic et al. [49] use the
near wall model (Section 4.2) of Chieng and Launder [35] with the standard k-e model, with modifica-
tions for the production and diffusion terms in the € equation. This computation underpredicts the value
of XR by about 11 percent. It is observed that the better prediction of XR is due to the modification of

the diffusion and production terms to account for the streamline curvature. The recent study of lIlegbusi
and Spalding [51], using the near wall treatment [28] and modified k-w model, predicts xp which agrees

with the experiments [54,55]. This model requires the specification of two additional constants. The

exact reason for the underprediction of xg by the standard model, however, is unclear (see Section
S5.2.1).

All the methods overpredict the shear stress in the separated shear layer. This implics that in this
region, the computed turbulent viscosity will be higher than that existing in an actual flow. This, of
course, can result in a shorter reattachment length as observed in all the predictions. The redevelopment
of the flow downstream of the reattachment is also not correctly predicted in any of the predictions.
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TABLE 1. FLOW OVER A BACKWARD FACING STEP

Flow Properties

Reference Turbulence Model Compared Remarks
Mansour and Morel [44] k-€ Wall static pressure P xg=52H
Mean velocity U Different near wall models
Shear stress uv have no effect on xg
Pollard [45] k-e p. U, o xg = 5.88 H
Reasonable agreement with
cross stream uv, poor predic-
tion of axial variation of uv
Rodi et al. [46] k-€ p, U, uv xg=5.8H
Shear stress over predicted,
recovery beyond reattachment
not well predicted.
Launder et al. [47] Algebraic stress model p, U, av XR = 6.9 H
Agrees with the experimental
result. Predicts a slower down-
stream development compared
to experiment.
Spalding et al. {48] k-€ p, U, uv xg=6H
Demirdzic et al. [49] Modified k-e. Modifica- p, U, v xg=6.2H
tions to production and rate of growth of outer edge
diffusion terms in € underpredicted. Effect of
equation. Near wall model each of the two modifica-
of Cand L [28] tions is not known.
Donaldson ¢t al. [50] Reynoids stress model p, U, av xp=6.1H
Prediction is good but
expcnsive.
llegbusi and Spalding [51] k-¢ modified p, U, w xg=7.2H
near wall model of k-€ and k-w predict equally
Cand L well. Predicts the shear stress
k-w modified. variation across the channel
new term added (two as well as along the channel
more constants) near reasonably accurately.
wall model of Cand L
Nallasamy [52] k- model p, U, o xg =58
Contours of k, €
Syed et al. [53] k-€ Model XR XR = 5.8 (Low Re flow)
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Ilegbusi and Spalding [51] with their modified k-w model obtain a value of XR = 7.2 H. Their

conclusion, however, is that both k-e and k-w model (modified) predict the flow over a backward facing
step equally well. The difference between the predicted and measured peak shear stress across the channel
ranged from ~17.5 percent to -1 percent for the k-¢ model as compared to -4 percent to +21 percent
for the k-w model. Static pressure is well predicted by both the models.

Launder [56] discusses the effects of mesh size, false diffusion and inlet boundary conditions on
the flow prediction. These are considered in Section VI

There arises a question about the prediction of the flow over a backward facing step. Why is it
that the flow in a pipe expansion is predicted well (Section 5.2.1) but not the asymmetrical channel
expansion? One is reminded of the problem of the prediction of plane and axisymmetric jet flows
[57,58], where the spreading rate of a plane jet is correctly predicted while that of an axisymmetric jet
is overpredicted using the standard k-¢ model. It is not exactly clear what causes this difference in
predictions between the two confined flow geometries. An attempt is made to explain the behavior of
the k-e model in the two cases in Section 5.2.1.

5.1.2 Symmetric Expansion (Double Step) Flow

Gosman et al. [59] studied the plane symmetric sudden expansion (sometimes called a double
step) flow using k-¢ model. The regions of recirculation on both sides of the symmetric plane were
identical for low expansion ratios. For large expansion ratios (C1.5), they observed that the two recir-
culation regions interact to produce asymmetric regions of recirculation. At some conditions, they
observed two regions of recirculation on one side and one on the other side of the symmetric plane.
The numerical results for the range of expansion ratios where symmetry was observed showed good
agreement with experiments [60]. Though one would expect that the stabilizing effect of the top wall
(instead of a symmetry line) to produce a shorter recirculation region in the case of asymmetric (single
step) expansion flow as compared to double step flow, it has not been precisely measured in the
experiments,

5.1.3 Flow Over a Square Obstacle

Durst and Rastogi [61] investigated theoretically as well as experimentally (using LDA) the flow
over a square obstacle in a two-dimensional channel. They used a k-¢ model and a three equation k, €
and uv model. They obtained a recirculation region behind the obstacle of size xg = 7.5 H. The calcu-

lations showed rcattachment on the obstacle itself (Fig. 8) which was not observed in the experiments.
This they attribute to three-dimensional effects. Velocity profiles upstream were faithfully reproduced,
while over and behind the obstruction the agreement was poor. The redevelopment after the reattach-
ment was also slow. Use of the three equation model improves the calculated mean velocity profiles,
but not significantly. The kinetic energy profiles show only qualitative agreement. The calculated length
scales in the separated region and downstream of separation point indicate large scale eddies. They

observed that the k-e model has to be modified to obtain more accurate calculations in the separated
region.
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Figure 8. Flow over a square obstacle: predicted and measured flow pattern [61].

5.2 Axisymmetric Flows
5.2.1 Flow in a Sudden Pipe Expansion

Flow in a pipe expansion is one of the basic problems encountered in common engineering flow
systems. The separated, reattached and recirculating flow downstream of the expansion greatly influences
the transport of momentum and heat. Increased levels of heat and mass transfer occur. This increase is
attributed to increase in levels of turbulent kinetic energy in the stream. The high kinetic energy comes
about due to the large shear stress in the separated layer and the associated low rate of turbulent energy
dissipation. Because of the intrinsic practical interest several experimental and theoretical studies have
been carried out on this flow configuration. This geometry also forms the basic configuration for combus-
tor studies (dump combustors), with swirl introduced before the expansion. In earlier computations of
pipe expansion flow, a uniform length scale over the entire separated region was assumed [11]. Only
with the introduction of a differential equation for calculating the variation of the length scale in the
separated region, computations can predict the desired flow properties (Section 5.1).

As in the backward facing step flow, an important parameter for comparison of pipe expansion
flow predictions, is the reattachment length XR- The location of the reattachment point also determines

ihe location of maximum heat/mass transfer coefficient. Figure 9 shows the predicted separation lengths

by different computations. Table 2 lists the turbulence model used by different authors and some
observations. The experimentally observed value of XR is 8.5 to 9 H for this geometry [64,68,69]. From

the figure one notices the following: In contrast to the predictions of backward facing step flow, the
standard k-¢ model predicts the reattachment length within the experimental uncertainty. This is
interesting since it has some implications on the set of model constants used. One can discern the follow-
ing prediction trends when one uses the same model constants appropriate for the boundary layer flows.

The flow in a sudden pipe expansion is predicted fairly well while the flow over a backward
facing step is underpredicted by about 20 percent, using the standard k-¢ model. It is not clear whether
this is related to the problem of the prediction of plane and axisymmetric unconfined jet flows [57,58].
However, the underprediction of the flow over a backward facing step flow may be related to the under-
prediction of the recirculation region in the bluff-body stabilized flows [70]. Habib and Whitelaw
[71,72) observe that the k-e model connects the dissipation rate/production strongly to the mean flow
field. In regions where there is more than one major component of velocity gradient tensor extra strain
rates are added to the generation terms. Then, the Reynolds stresses change by values that are much
larger than the direct effect of these strains and this is not represented by the effective viscosity model
[32]. The response of the k-¢ model to changes in mean flow field is too fast. The stabilizing effect of
the top wall in the flow over a backward facing step may not be correctly represented in the k-¢ model.
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Figure 9. Axisymmetric expansion; predicted separation length, XR-

Habib and Whitelaw [71] find that in the confined coaxial jet predictions, with the increase in
the velocity ratio of annulus to pipe greater than unity, the underprediction of the separation region
increases. The top wall in the backward step flow may have similar effects.

Reverting to Table 2, the .nodified k-¢ models of Refsrences 66, 67, 68, and 28 do not appre-
ciably improve the reattachment length. Chieng and Launuer [28] state that the near wall model does
not change the reattachment region but only improves the heat transfer prediction. The reduced value
of xR in these cases may be partly due to the low Reynolds number (R,p) of these computations.

Reference 64 gives the variation of XR with R.p.
To conclude this section, it is observed that no standard modification of the k-¢ model which

will respond correctly to the axisymmetric as well as asymmetric plane expansion flow has been arrived
at. It appears that the algebraic stress model would be a better alternative.

26




‘[Tem dy) Iedu
paureiqo s9[eds Y)3us] 93Ie] 0) ANp SaNJBA NN dIIsIRAIUN
seonpoid (q) JO 8S) "(3USWYIBIIBAL JO UONIEDO] sadurr)

XnN wnwrxew ay) Jo UOIBI0] 3y} SFULYD 10U S0P

[epour [jem IBaN Py 01 Ajanisuss 1918213 Moys suoneIndwo)

uordar [[em Ieou

10} [apour 9 mo] (q)
[opows I24e] [[em (B)

[8Z] 1opune]

H§=dx nN payrpow 3-3 pue uaty)
1opouwt
(0008 = 0%y) (parewnse) H 0’8 03 0L = Hx ON | [1em JEQU poyIpOW - [89] ouewry
uoIgal jusl
-dojaaapal 3y} UI S2)BI I3JSUBI] JB3Y JO uondIpald o soaoxdwit WSYH
(JuswWBaI) [[BM) PAIJIPOUI 3-Y JO JBY) UBY) 191399 suoldipald WY (L9] 1200
(00002 = Qumv (pa1eWNS’)) HO'R 01 0L = dy nN [opOw $SaI3S Sp[oukay pue ourwy
uoto1pa1d 1ojsurl) 1BaY oY} SoA0Id W JUalleal) JOAR] [[EM (7't 29S) JUBWIEAI)
(porewmsa) H §°8 03 §'L = dx N [[em Jeau UM 3-) [99] ourwry
ER |
HOoL = dx Jo smojuod ‘N ‘An “d ER'Y [59] uay)
suo [pluswWIadxa ay) uey] Iauuly} uotSaI
ST UOT30I UOIR[NOIAI PajoipaId “A1100]aA aUl] [RIIUSD JO ABJIP JOMOIS uonEMoIaI oﬁ jo (9] 108urpny
H <6 =dx | azis Ayooraa auif enjua) -3 pue UOO
AL/ pue
HS'g = dx ‘y ‘) JO SINOJUOD ‘AN ‘g 3-y | [6S] ‘[e 19 UBWSOL)
"SjUAWILIad X3
oY) Yiim [[am 2215E SON)ISUIIUL JUS[NGIN} PUE SOTJIDO[SA UBIUI PAIJIPald JUAWIYIE} BRI [£9] Suresseyd
H6 = dx d‘an‘n I81je WS Pue 3-Y pue Yuiy ey
"SosBaIOUT
juswiadxa pue uonorpard 2y Usamiaq sarouRdaIosIp UOIFDI Juall
-yor11RaI 9y} pUOKaq ‘UOTFaI JUSUIYDEIIEBAT oY) Ul POOT A[ITR] SUOIIDIPAI]
(01 =Py g =¥x ANy > [29] ud
sylewoy sarjradold [SPOJN 22usnginy, aouaIa)oy

Mol psinduio)

NOISNVJXH ddId N9ddNS V NI MOTd T A1dV.L

27



5.2.2 Diffuser Flows

The axisymmetric diffuser flows can be divided into two groups: (i) small angle diffusers (no
separation) with expansion of total angles equal to 5 to 10 deg, represent the aerodynamic diffusers;
(ii) large angle diffusers (with separation) as found in “dump” combustors (90 deg half angle represents
the sudden expansion). The computation of group (i) flows is generally through the solution of parabolic
type equations and will not be considered here. In the second class only two recent contributions will be
discussed.

Habib and Whitelaw [73] computed the axisymmetric recirculating flows in wide angle diffusers
and compared this with their experimental results. They considered 20 and 40 deg half-angle geometries.
The diameter expansion ratio was 2.0. They computed the flow with an orthogonal-curvilinear (body
fitted) coordinate system. The standard k-e model was employed. Mean axial velocity and radial velocity
profiles and kinetic energy contours were presented and compared with experiments.

They find that the location of the maximum kinetic energy is correctly predicted but its value
is underpredicted by about 30 percent. They attribute this to the incorrect representation of the source
terms in the transport equation for € and partly to the extra strain terms in the calculations of Reynolds
stress terms and the rate of dissipation. The mean axial velocity and radial velocity are well predicted.
Rhode et al. [74] report the computed results for expansion angles of 45, 70 and 90 deg, for the
diameter expansion of 2. They use a non-uniform grid system and the standard k-¢ model. The predicted
mean velocity profiles show good agreement with the experiments of {69]. The computed flow pattern
agrees with their flow visualization pictures. They characterize the size and shape of the recirculation
region as a function of the angle of the sloping wall. They, however, did not make any comparison of
the turbulence quantities such as the Reynolds stress.

5.3 Curved Flows

This section discusses the predictions of flows with streamline curvature caused by the surface
curvature and swirl.

5.3.1 Flows with Surface Curvature

Pourahmadi  and Humphrey [34], using their modifications for the value of C# discussed in

Section 4.3, obtained very good predictions for the fully developed flow in a highly curved two-
dimensional duct.

Figure 10 shows the streamwise variation of friction factor at the inner and outer walls of
strongly curved channel flow. The use of standard C# in k-e overpredicts the innerwall Cy while severely

underpredicting the outer wall Cs. The modified model predicts the inner wall Cg very well and greatly
improves the Cy at the outer wall. These predictions are in agreement with the experiments of Honami

et al. [75]. The prediction of the mean velocity profiles is satisfactory even with standard k-e models.
Launder et al. [35] predicted the curved duct flow corresponding to the experiments of Ellis and
Joubert [76], with the modification of lengthscale incorporating the gradient Richardson number. They
obtain good agreement for the mean velocity and the shear stress at the inner wall.

Towne [77] has computed the turbulent flow through circular and square cross sectioned S-ducts
using three-dimensional parabolic equations with marching procedure. He obtains good agreement of the
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mean velocity profile with experiment, but no details of the shear stress variation is reported. He used
an algebraic mixing length turbulence model. Typical streamwise velocity profiles in the pipe are shown
in Figure 11. It is seen that a fine mesh (50 x 50 x 80) is needed to produce a meaningful prediction of

the mean velocity profile variation.

6.0} (o o) DATA FROM HONAMI ET AL:
» ' Re=103,960; R./D = 9.25
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Figure 10. Streamwise variation of friction factor at the inner and outer walls
of strongly curved channel flow [34].
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Figure 11. Computed and measured streamwise velocity profiles in symmetry plane
for turbulent flow in 22.5 to 22.5 circular S-duct [77].
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Mukerjee et al. [78] use the k-6 model to compute the flow in a highly curved 180 deg turnaround
axisymmetric duct configuration of the SSME. The curvature effect has not been explicitly included in
their turbulence model. Because of this, it is difficult to estimate the accuracy of the solution, though it
appears to predict the trend qualitatively [79]. No detailed predictions of the turbulent flow in a highly
curved channel has been reported in the literature. Agarwal et al. {80] using LDA obtained detailed
laminar flow characteristics in a 180 deg curved tube, of Rc/r = 7 and 20. This flow was successfully
simulated using a three-dimensional code with fine mesh (50 x 50 x 226) by Towne [77]. No detailed
experimental results are available for the 180 deg bend of RC/r = | as found in SSME turnaround ducts.

5.3.2 Flows with Swirl

Swirling flows result from the application of a tangential velocity component imparted to the flow
by swirl vanes, tangential entry, etc. Swirl flow occurs in a variety of applications, the most
extensively studied one being the combustion aerodynamics. Nuttal [81] was the first one to observe
the reverse flow characteristics of a swirling flow in a circular pipe. For Reynolds numbers in the range

1 x 104 to 3 x 104, three types of flow patterns are observed as shown in Figure 12. Transition from
one-celled to two and finally a three-celled vortex structure occurs, as the swirl component of the
velocity increases. This would be a difficult problem for modeling. A compendium of experimental and
computational studies of swirl flows can be found in the recent book, “Swirl Flows,” by Gupta et al.
[82]. The review by Jones and Whitelaw [83] provides a good account of the prediction methods for
reacting flows. The following sections discuss predictions of two nonreacting swirl flow configurations,
namely the swirl flow in a pipe expansion and the swirled confined coaxial jets.
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Figure 12. Flow reversal observed by Nuttal for swirling flow in a circular pipe [81].

5.3.2.1 Swirl Flow in a Pipe Expansion
This is the basic form of the dump combustor geometry. With the introduction of swirl,

a central recirculation zone (CTRZ) is formed, in addition to the corner recirculation zone (CRZ)
[74]. The recirculation zones are important in the design because most combustion occurs in
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and near these regions. The nonswirling pipe expansion has only the CRZ and with the swirl imparted at
the inlet, a central recirculation region appears and the size of CRZ decreases. The corner recirculation
zone is reduced in the axial extent until it disappears for a swirl vane angle of 70 deg (Fig. 13). These
predictions were obtained using the TEACH code with k-e turbulence model. Novick et al. [84,85] obtained
useful flow predictions for actual combustor geometries. One example is shown in Figure 14. With no swirl
the CRZ fills the outer cavity. As swirl is introduced a CTRZ appears in conjunction with a decrease in the
size of CRZ (see Fig. 14 for 45 deg swirl angle). Further increase in swirl angle results in continued enlarge-
ment of the CTRZ and a decrease in the size of the CRZ. At 75 deg the CRZ disappears. No direct com-
parison with experiments has been made.

¢
b‘_—\‘\\
0.00 1.00 2.00 3.00
(a) ¢=0°

r/D

0.00 1.00 2.00 3.00

0.00 1.00 2.00 3.00
{¢) ¢ =70°

AXIAL POSITION x/D

Figure 13. Predicted streamline plots with wall expansion angle o = 90 deg
and various swirl vane angles ¢. [74].
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5.3.2.2 Confined Coaxial Jets

This basic configuration is being studied extensively both experimentally and theoretically because
of its importance in combustor designs. Efforts have been made to predict the flow patterns for a range
of swirl numbers. At low swirl numbers S < 0.5, there is only the corner recirculation zone. For swirl
numbers S 2 0.5 an additional central recirculation zone is observed. The swirl number is defined as

R
[ our?war

0
S =

R
R [ pW2-05W)rdr
0

(SO is the swirl number of the outer jet, Si is the swirl number of the inner jet, and « is the velocity ratio of

annulus to pipe).

Table 3 summarizes the recent numerical studies on swirling jets. As it is obvious from the table,
all the studies use the k-e turbulence model. Detailed analysis of the predictions of the k-e model for
swirling jet is presented by Habib and Whitelaw [72]. The recirculation length is underpredicted by about
20 percent for a = 1. With increase in «, the prediction gets worse. This is attributed to the incorrect
representation of the diffusion process in the k- model. For the flow with swirl, the model is incapable
of predicting the velocity minimum obtained at the axis in the experiments. Figure 15 shows the velocity
profiles for swirl and no swirl cases. This velocity minimum on the central line has not been predicted
correctly in any of the studies reported. They also observe that the intermediate swirl number of 0.23
provides the flow which is more difficult to present by calculation methods since the near recirculation
region is located away from the solid surfaces. With no swirl there is only the CRZ. With the swirl
number of 0.5, the CTRZ is tied to the exit geometry and the downstream flow is easily represented.
Srinivasan and Mongia [41] modified the k-e model to include the Richardson number dependence
through the constant C, of the model. They use the gradient Richardson number, and divide this into
two: swirl Richardson number and curvature Richardson number quite arbitrarily. However, they find
that at high swirl numbers, the curvature Richardson number has no influence on the flow but swirl
Richardson number is the controlling one. They could not obtain convergent results for coswirl case.
They modified their program to include radial pressure variations, which enabled them to obtain coswirl solu-
tions. Coswirl solutions showed a central recirculation zone not observed in experiments. Ramos {86]
claims that with the use of suitable initial condition, the standard k-e model predicts the coswirl flow.
His claim is not substantiated by providing the exact initial condition used and the justification for the
conditions used. Hence, it is not of much use in understanding the prediction method. Novick et al
[84,85] study several variations of the combustor configurations. They characterize the size and shape
of the recirculation zones with swirl nhumber, expansion ratio and the geometry. These results help one
to get some idea of the predictive capability of the k-e turbulence model for these configurations.

In general, in the prediction of confined vortex flows, the k-e model performs rather poorly [88].
Figure 16 shows the predicted and measured tangential velocity profile in a vortex tube. It is seen that
the standard k-e model does not even predict the qualitative features of the flow while the ASM pre-
dictions agree well with experimental results [89]. Dixon et al. [90] employed the k-¢ model for pre-
dicting the swirled coaxial jets and found that the model underpredicted the extent of the central recircu-
lation region by about 20 percent. They also found that the prediction of the maximum recirculated mass
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flow rate in the central recirculation zone was still worse; it was half that of the measured one. Thus,
the use of the standard k- model to highly swirling flows may not produce reliable results [91] and the use
of ASM should be recommended.

The accuracy of the numerical schemes in predicting the swirl flows and the effect of inlet
boundary conditions are briefly discussed in Section VI.
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Figure 15. Measured and calculated distributions of the mean velocity. o Measurements,
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10 J

* |

—8-

—10+

Figure 16. Predicted and experimental tangential velocity profiles in the vortex tube.
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5.4 Three-Dimensional Computations
5.4.1 Noncircular Duct Flows

Turbulent flow in noncircular ducts is characterized by the everpresent secondary motions, The
magnitude of the secondary motion depends on the geometry and is strongly influenced by the curvature.
Presence of secondary flows makes the problem more difficult. One has to solve for the three
components of velocity and additional equations for Reynolds stresses. To make the problem tractable,
most studies on noncircular passages concentrate on fully-developed flow in uniform cross-section.
(Developing flow was a test problem in the 1981-Stanford conference and will be presented in this
section.)

The cause of secondary motion has been investigated and explained. Recently, Speziale [92)
has proven mathematically that the secondary flows in noncircular ducts result from a nonzero difference
in the normal Reynolds stresses on planes perpendicular to the axial flow direction. He also shows that
the widely used k-e turbulence model has no built-in mechanism for the development of secondary flow,
while the second order closure models do.

Launder and Ying [93] were the first to carry out a detailed numerical prediction of the turbu-
lent flow in a square duct. They employed the simplified form of the Reynolds stress model of Hanjalic
and Launder [94] which advocates the solution of seven coupled nonlinear differential equations in
addition to those of mean flow quantities (Section 3.3). Launder and Ying found that for fully developed
flows the convection and diffusion terms in the stress transport equations may be neglected. This

important simplification results in the removal of all differential coefficients of ﬁ:ﬁj and hence algebraic
in the latter (the reasoning putforth in ASM, Section 3.5). They obtain the following form of equations:

2 2
— =5 _ U4 U5
upc - uyt =-ClEfl—) - | —
~ axl 3X2
U U
3 3
u, =-C12 | —
12 (axl)(axz)

They solve the Kkinetic energy equation in addition to the three momentum equations and use the
algebraic relations for the stresses (49) and the length scale.

3

(49)

Later investigations employed a differential equation for €. This method of solving five differential
and algebraic equations for the stresses has been successfully employed for solving the flow in rectangular,
triangular and elliptic ducts, and tube assemblics by Gosman and Rapley {95]. They use a boundary fitted
(orthogonal curvilinear) coordinate system for the noncircular ducts. Comparison of the ASM equations
with laminar contributions reveals that axial stresses u_l_u—3 and u_2'11—3 depend on turbulent viscosity and

axial strain rate in a Newtonian fashion; but the cross-planar stress equations are distinctly different from
the Newtonian relations depending on the axial as opposed to cross-planar strain rates. It is this feature,
as explained by Speziale, that is responsible for the turbulence-driven secondary motion.

Perhaps, the most exhaustive study of fully-developed turbulent flow in noncircular ducts is that
of Gosman and Rapley [95]. They studied the flow in square, rectangular, triangular, and elliptic ducts
and tubc assembly passages and compared the accuracies of the predictions by different turbulence
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models. Detailed comparison of the mean velocity, secondary velocities, friction factor and Reynolds
stress components with those of experiments [96] and other numerical predictions were presented for
the square duct. They compared the prediction of the algebraic stress model, Reynolds stress model {97],
and modified Reynolds stress model [98]. The modification in Noat et al. [98] is only the finite differ-
ence method of solution. By employing a local block inversion method, they solved the flow and stress
equations simultaneously rather than sequentially as in other methods. Figures 17 and 18 show the com-
parison of the prediction by the three models with the experiment [99]. The three models predict the
axial (Fig. 17) and secondary velocities (Fig. 18) equally well. However, the Reynolds stress components
(Fig. 19) are not predicted well. This may be partly due to the expected underprediction of the normal
stress anisotropy, with the set of constants used,

- — — EXPERIMENT, LAUNDER & YING [96] \ - g
—-— PREDICTION, LAUNDER & YING [93]
--—— PREDICTION, NAOT ET AL. [98] °
—-— PREDICTION, REECE [97]
—— PREDICTION, GOSMAN & RAPLEY [95] /] !
J/ \ \ (I'_?S.‘
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A
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gJ0a EXPERIMENT, LAUNDER & YING [96] j
—---PREDICTED, LAUNDER AND YING [93] 4
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—— PREDICTED, GOSMAN & RAPLEY [95] /
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Figure 18. Secondary velocity profiles (U|/U3*) in a square duct, Re = 2.15 x 10° [95].
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Figure 19. Reynolds stress profiles in a square duct, Re = 8.3 x 104 [95].

5.4.2 Developing Flow in a Square Duct

This was a test problem at the 1981-Stanford conference on complex turbulent flows. Only three
groups attempted this problem. Table 4 shows the models used by them and comments on the predicted
results. All three groups use the ASM-based method. References 46 and 100 use a differential equation
for €, while Reference 101 uses an algebraic equation. As indicated in the table, the model predictions
are very poor. This means that the algebraic stress model is not good for developing flow where local

equilibrium assumption is not valid. Perhaps only the Reynolds stress model is capable of predicting the
developing flow in a square duct,
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VI. NUMERICAL METHODS

The prediction methods use various numerical schemes and solution procedures whose perform-
ance in different regions of the same flow and in different flow situations are not well established.
Two related problems which influence the predicted solutions are briefly discussed below.

6.1 False Diffusion

Most methods employ an upwind difference scheme which is known to introduce false diffusion

errors. The false diffusion coefficient at any computational cell can be computed from the formula
[102,103]

B p U AxAy sin 20
Fe= — 3 (50)
4 (Ay sin”® 8 + Ax cos” 0)

where Ax and Ay are the cell dimensions and 8 is the angle made by the resultant velocity at the grid
lines. Figure 20 shows, for a hybrid central-upwind scheme with a fine grid (42 x 42) which produces a mesh
independent solution, the variation of maximum normalized false diffusion coefficient along the duct of
backstep flow (Section 5.1). The false diffusion coefficient shown is the value normalized with local value of
turbulent viscosity and multiplied by the ratio of the local-to-maximum shear stress at any station [56]. The
maximum value of the factor is about 0.2 and the estimated error caused by this false diffusion in the pre-
diction of the reattachment length is about 0.3H. For example Syed et al. [53], by using an accurate scheme
(bounded Skewed Upwind Scheme), obtain an increase of 0.35H in XR over hybrid scheme, for a fine

mesh. In the presence of numerical diffusion in the recirculation region, no meaningful comparison of
two turbulence models can be made. On a moderate grid, upwind ditferencing scheme may be
insensitive to changes in turbulent viscosity. If one is unable to accommodate a fine enough mesh, then
the alternative is to use a higher order accurate scheme. McGuirk et al. [104] use a selective mesh refine-
ment procedure which reduces the number of mesh points required but maintaining a higher accuracy.
They identify the regions of “false diffusion™ present in the solution, with a given grid, by estimating
the magnitude of the local truncation error in the converged solution of the discretized equations. This
identifies the local regions where the Peclet number is high. They change the difference scheme depend-
ing on the value of the Peclet number: if |[Pe| < 2, they use central differencing scheme and if
[Pe} > 2, they use upwind difference scheme. This guarantees numerical stability and produces accurate

results. This procedure may be useful in comparing two different turbulence models. But, it is too involved
and expensive to use as a general solution procedure,

Numerical differencing schemes that reduce the false diffusion have been developed [105,106}.
Leschziner and Rodi [37] evaluated the performance of three difference schemes — hybrid central/
upwind differencing scheme (CUDS), hybrid central/skewed-upwind differencing scheme (CSUDS), and
quadratic upwind weighted differencing scheme (QUDS) — on annular and twin parallel jet flows and
found that the later two (CSUDS and QUDS) reduce the false diffusion errors significantly. Syed and
Chiappetta [53}] have tested scveral schemes for accuracy in predicting the swirl flows. They found that

the bounded skewed upwind scheme (BSUDS) produced more accurate results than the hybrid (CUDS)
scheme.
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Figure 20. Maximum relative level of false diffusion coefficient at any section [56].

6.2 Inlet Boundary Conditions

Inlet conditions are usually considered of minor importance while evaluating the performance of

#yietezalae nn smmAale acnlmet A 4 111
turbulenice models against expcrimental data. Assumed boundary conditions can lead to wrong conclu-

sions about the performance of the model. In particular, the inlet profiles of k and e can have a
significant effect on the flow downstream. The profiles of k may be estimated from the experimental
results. But no satisfactory method of evaluating inlet € profile is available, In the flow over a backward
step, for example, if one starts with a larger initial length scale (larger viscosities), the prediction is
expected to give a shorter reattachment length. But the predictions do not show such a trend.

The inlet conditions become more “controlling” when the inlet flow has a swirl component.
Sturgess et al. [87] studied in detail the effect of inlet boundary conditions in swirl flows. They found
that the computations were sensitive to the inlet conditions, and might affect the solution in the entire flow
domain. Many times, by manipulating the inlet profiles, a better fit to the experimental data can be
obtained. For example, Ramos [86] claims that k-e model predicts a recirculation zone for both co- and
counter-swirl conditions, if suitable initial conditions are used. Leschziner and Rodi [107] find that the
inlet conditions for k and e play as crucial a role in achieving predictive accuracy as turbulence modeling
details. Thus, in the absence of experimental inlet profile data, careful and “judicious” choice of the
initial condition estimation is essential for a physically meaningful prediction.
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Typical Inlet Conditions Employed in Predictions

Kin €in
(a) Flows Without Swirl
. 2 . 3/2
Qin [62] 0.003 x Uy, 0.09 x k;;,3/2/(0.03 x D/2)
(b) Flows With Swirl
Habib and Whitelaw [72] k=1/2 w2 +v2+ w2 0.09 x k;,3/2 (0.03 x R)
u’ — experiment (R is the radius of pipe or
vV=w =0.6u annulus)

Sturgess et al. [87] studied the effect of inlet boundary conditions on the prediction of swirl
flows. They found that the numerical solutions were very sensitive to the inlet boundary conditions and
the overall accuracy of the prediction depended on the grid system. Syed and Sturgess [108] describe the
present status of the predictive capability for the swirling recirculating nonreactive flows (Fig. 21). To
this should be added the inability to predict the coswirl flow, the central line minimum, and the radial
variations of the mean velocity as discussed in Section 5.2.3. Detailed experimental data for coaxial jets

with and without swirl can be found in References 109 and 110, for evaluating turbulence model pre-
dictions.

REGION | REGION I REGION Il
RECIRCULATION
REGION:
INLET REGION: STRENGTH = PARABOLIC
ACCURACY OF UNDERPREDICTED REGION:
PREDICTIONS BY 20 — 25%
DETERMINED BY\ SIZE = ACCURACY BETTER
ACCURACY OF UNDERPREDICTED THAN 85 — 90%
INLET PROFILE BY 15 — 20%
PROFILE =
QUALITATIVELY
PREDICTED
4 LldlLlLlLLdldddlLllll L L L LLLLLLLLL
AREAS OF 1|/~
RECIRCULATION /
4
. T
— T
\
CENTERLINE

Figure 21. Summary of the accuracy of predictions in the various regions of flow with swirl [108].
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VIlI. COUNTERGRADIENT TRANSPORT AND TURBULENCE MODELING

The eddy viscosity type models assume that the gradient transport hypothesis holds in all the
regions of the flow. However, it is known that small regions of countergradient transport or negative
turbulent energy production exist in many flow situations such as asymmetric channel flow, wall jets,
wake flows, perturbed shear layers, etc. Beguier et al. [111] discuss a variety of flow situations which
contain regions where the product -UV 0U/dy becomes negative. Townsend [112] was the first to
recognize and explain the small region of countergradient transport of momentum in a plane wake.
In this region, transport of momentum consists of two parts: (a) gradient type diffusion by small
scales and (b) convection by large scale motions of eddies comparable in size to the characteristic
length scale of the problem. Hinze [113] extended this concept to asymmetric flow. To account for the
contribution due to the bulk transport by the large eddy, one adds a second term in the expression for
Reynolds stress (see, for example Ref. 3, page 372). The additional term is proportional to either

a(vz)l/z/ay or to a(q—2)1/2/ay where (q2)/2 is the kinetic energy.

Beguir et al. [111] analyzed different flow situations in which such regions of countergradient
transport occurs. They find that a direct relationship between the sign of the gradient of (qz)l/ 2
and the displacement, e, of the minimum exists. The displacement e is defined as

- _C P NY0)
T Yav=0)" Y(@U/ay=0) =~ o> 3y @ ! D

where C is a constant (= 0.1), 10 is a characteristic length scale, such as the width of the channel. The

product € a(q2)1/2/8y was negative for the majority of the flows considered, where the flow asymme-
try or the perturbation was small. However, when the asymmetry, such as the interaction of wake behind
cylinders of unequal diameters, or the perturbation was strong, the product was positive. Their flow
visualization of the interacting wake behind the cylinders showed that in that case, merger (or pairing)
of the vortices of the same sense of rotation occurred, similar to that found in shear layers [114,115].
This suggests that the small asymmetry or perturbation resuits only in a change in the orientation of the
generally elliptic vortex structure (against the gradient dU/dy instead of along the gradient) and results
in only minor changes in turbulence quantities, This results in a negative sign of the product

€ o a(qz)l/ 2/ay. The strongly asymmetric or perturbed flow condition results in merger of large scale
eddies, in which case the variation in turbulence quantities is too complex. This situation cannot possibly
be described by simply adding a term to the Reynolds stress equation. An example of the changes in tur-
bulence quantities in a perturbed axisymmetric mixing layer [116] is shown in Figure 22. It can be seen
that for the strong perturbation, in which localized vortex merger occurs, the shapes of the Reynolds
stress and the longitudinal velocity fluctuation profiles are different from those of unperturbed or of
small perturbation and are too complex. Oster and Wygnanski [117] present a detailed study of the
variations of the turbulence quantities in a perturbed plane mixing layer. Employing Reynolds stress
model one can predict the small asymmetric or perturbation case satisfactorily [23] or even by a
simplified form of the Reynolds stress model [94]. However, it is not known if the Reynolds stress
model can predict the strongly asymmetric or perturbed case.
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Figure 22. Perturbed mixing layer characteristics [116].

For the transport of any scalar quantity, ¢ in a turbulent flow, one can define an equation similar
to that of (51).

Co 3 a(q—2)1/2

=y - = — 52
° = Yov=0 ~Yeloy=0)~ 51" 5, (52)

Beguier et al. [111] considered this for the case of asymmetric mean temperature (6) profile.

Again for small perturbations the product ey - a(qz)l/z/ay was negative and for a strong interaction
case it was positive,

44




The countergradient diffusion in flows involving combustion has been studied by Libby and his
co-workers [118,119]. They avoid the gradient transport assumption and develop a second order closure
model. They attribute this diffusion to the differential effect of the mean pressure gradient on cold
reactants and hot products. Jones and Whitelaw [83] also observe that the countergradient diffusion is
due to the preferential influence of the mean pressure gradient on low- and high-density gases which

manifest through the terms like p'u;” af)'/axi and p'¢” aE/axi in the exact Favre-averaged (density

J
weighted) [120] Reynolds stress and turbulent scalar flux transport equations.

Spalding [121] calls the countergradient diffusion as “pressure gradient” diffusion, because of its
connection to the pressure gradient. He observes that the turbulence modelers have been concerned exclu-
sively with Kelvin-Helmholtz (shear generated vortex roll-up and pairing) instability and little attention
has been given to Rayleigh-Taylor instability. His two-fluid model takes care of the later and is expected
to describe the so-called countergradient or pressure gradient diffusion process. However, it is not clear
at this point, if it can describe the shear generated variations of turbulence quantities in small and
strongly perturbed/asymmetric flow discussed above, as well.

VIiIl. COMPUTATIONS OF RECIRCULATING FLOWS WITH PHOENICS CODE

PHOENICS is a general purpose flow simulation code developed by Prof. Spalding and his asso-
ciates at the Imperial College, London. The acronym PHOENICS stands for Parabolic Hyperbolic or
Elliptic Numerical Integration Code Series. The code is now available commercially through the CHAM
of North America in the U.S. and the CHAM of the United Kingdom in the U.K. The general features
of the program are discussed by Spalding in Reference 122. The basic concepts and solution procedures
employed in the code can be found in Reference 123. Here we present the computational results
obtained with the k-e model using the PHOENICS code for two flow configurations: (i) the flow over
a backward facing step and (ii) the flow over a square obstacle in a two-dimensional channel. Only a
brief discussion on the results is included. The sensitivity of the solution to the inlet boundary condi-
tion and the difference in the k-e model predictions for the axisymmetric and asymmetric channel
expansions will be discussed in a forthcoming report.

8.1 Flow Over a Backward Facing Step

This is the benchmark problem discussed in Section 5.1.1. The layout of the grid for the present
computation is shown in Figure 23. The grid used is an adjusted (more grid lines near the walls) 42 x 42
grid to produce a grid independent solution. The expansion ratio is 1-5. The flow pattern with the recir-
culating region behind the step is shown in Figure 24. The length of the recirculation region xp is

equal to 5.8H, about the same as obtained in other k-e model predictions. Depending on the ratio of
the mesh sizes in the x and y directions (Ax/Ay), sometimes the solution exhibits a long tail for the
recirculation region [62]. Figure 25 shows the contours of the kinetic energy in the flow domain. A large
variation of the kinetic energy is observed in the separated shear layer and in the wall layer downstream of
the step (the contours in the core region have very low levels of k as would be expected). The contours of
€, the dissipation rate of k, are shown in Figure 26. Here again contours in the core region have very low
levels of €. The maximum variation of € occurs near the convex corner of the step. Figure 27 shows the
static pressure contours in the flow field. As would be expected, the maximum static pressure variation
occurs across the recirculating region. Thus, the predicted flow parameters show qualitative agreement with
the experimental results. But, quantitatively, the prediction shows poor agreement with the measured ones
both in the recirculating and redeveloping regions.
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Figure 27. Static pressure contours.

8.2 Flow Over a Square Obstacle in a Two-Dimensional Channel

The flow geometry and the flow conditions are the same as in Reference 61 and discussed in
Section 5.1.3. The grid layout for this problem is shown in Figure 28. The grid lines are uniformly
spaced in the y-direction and adjusted in the x-direction. The grid employed is 40 x 47, which produces
a nearly grid independent solution. There are four grid lines in the width of the obstacle. The flow
pattern obtained is shown in Figure 29. The flow separates at the upstream cormner of the obstacle and
there appears to be a small recirculating region (indicated by the sharp turn of this streamline and the
static pressure contours, Fig. 32) on the obstacle. Durst and Rastogi [61] found this separating streamline
to reattach on the obstacle itself (Fig. 8). However, their experimental results show no reattachment on
the obstacle. The length of the separated region is xg = 6.6 H in the present prediction as compared to

=~ 75 H observed in the measurement. Considering the nature of the flow, this flow is slightly better

predicted than the flow over a backward facing step. The reattachment length is underpredicted by only
about 12 percent, while for the backstep flow xg is underpredicted by about 20 percent. The kinetic

energy contours are shown in Figure 30. Because of the accelerating and decelerating nature of the flow
no core region (downstream of the obstacle) in which the contour levels are very low, is observed, as in
the backstep flow. Figure 31 shows the contours of the dissipation rate € in the computational domain.
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The static pressure contours shown in Figure 32 indicate large variations of pressure in the recirculation
region behind the obstruction and the region over the obstruction. Thus the qualitative features of the flow

are in good agreement with experiments. Further aspects of the predictions of these flows will be reported
in the forthcoming report.
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Figure 28. Calculation domain and grid layout for flow over a square obstacle.

Figure 31. e-contours.
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Figure 32. Static pressure contours.
IX. OTHER APPROACHES TO TURBULENT FLOW COMPUTATION

In this section, brief descriptions of three other approaches to turbulent flow computation,
namely the vortex method, the large eddy simulation and the direct simulation are given. These methods
are sometimes called higher level simulations, since they incorporate more flow physics than is possible
with turbulence models. They are still more of a research tool than a scheme for engineering calcula-
tions. The computational memory and time requirements of these methods are typically high. Hence, the
time for their implementation to aid the engineering flow analysis is yet to come.

9.1 Vortex Method

With the recognition of the existence of large-scale organized structures at least in the initial
regions of mixing layers, jets and wakes, vortex method has received renewed emphasis in recent years.
It has been used extensively to study the dynamics of large scale structures, since these large scale
features arise from the properties of a rotational but inviscid flow. The idea is to represent turbulence
as a superposition of interacting vortices. Saffman and Baker [124] provide an excellent account of
vortex interaction studies. Leonard [125] reviews the concepts and methods of vortex flow simulation,
including those for three-dimensional flows. Aref in his recent review [126] on the solution of two-
dimensional Euler equations, discusses the use of vortex methods in the studies of transition to turbu-
lence and the onset of chaos.

The widely used vortex method is the point vortex method. In this approach, the vorticity
originally confined in a thin layer is concentrated further into a finite number of point vortices. In other
words, the piecewise continuous distribution of vorticity w is replaced by a sum of N 6 functions.

N
WX, =Y Ty 8IX-X ()] (53)

n=1

where 6 is the Dirac delta function, X, = (xn,yn) is the location of the nth vortex of circulation I'.

The motion of vortices is followed by integrating the system of ordinary differential equations

dX

n
dt - U(Xn,t) . (54)

49



The solution of equations (53) and (54) represents the solution of the two-dimensional Euler equations:

0

ZrUvw=0 (55)
at

Vig=-w (56)
_ay _

UxTay o W TTE (57)

No precise answer can be given for the question of the number N of the vortices required for a simula-
tion. For a given N and t, confidence in the method is based on the requirement of the simulation and
is often limited by the computer memory and time requirements.

Experimental studies on perturbed mixing layers and jets suggest that the sensitivity of the
normally turbulent flows to external forcing is related to the rotational inviscid behavior of these flows.
Hence, vortex methods have been used to study these perturbed flows. Acton [127] studied the charac-
teristics of the “preferred mode” in circular jets. Vortex method has also been used to study the turbu-
lence suppression in perturbed shear layers, and vortex roll-up, pairing, etc., in perturbed plane jet flows
[128,129]. These studies depict clearly the dynamic features of the large scale vortical structures
observed in the experiments. The vorticity and Reynolds stress contours during pairing of vortex struc-
tures in a perturbed mixing layer obtained using the vortex-in-cell method are shown in Figure 33. This
corresponds to the orientation of pairing structures, for which a region of countergradient transport
will result in the time mean field.

In Chorin’s method for viscous flows [130], the inviscid outer flow is solved via discrete vortices
and viscous effects are incorporated via random walks for each vortex. Recently Chorin and his coworkers
have employed vortex methods for the study of turbulent combusting flows [131,132]. Beljaars et al.
[133] have developed a structural model for turbulent wall bounded flows in which they solve the
viscous flow equations for the inner flow and solve the outer flow using point vortex method. Dai et al.
[134] have studied the flow over a backward facing step using Chorin’s random vortex method. They
found that the vortex method predicted the essential characteristics of internal recirculating turbulent
flow. The calculated reattachment length agreed well with the experimental results. The equations of
motion of point vortices represent a Hamiltonian system. The study of the dynamics of few vortex
systems is expected to shed some light on the transition from laminar to turbulent flow and on the onset of
chaos [126].

9.2 Large-Eddy Simulation

In large-eddy simulation, the filtered time dependent three-dimensional Navier-Stokes equation is
integrated directly. Filtering is done to remove the small eddies and to obtain an equation for large
eddies. It is essentially equal to averaging over a small spatial region or low-pass filtering the equations
in Fourier-space. The effect of small eddies on the large ones has to be modeled. For a given flow, the
dividing line between the small and large scale flow fields is determined by the computational grid reso-
lution. When a large number of grid points is used, a large fraction of the turbulent eddices is directly
calculated and only a small fraction has to be modeled. One important feature of LES is that most of
the time-dependent characteristics of the flow are retained rather than lost in the averaging process.
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To obtain the equations for LES, Leonard [135] suggested the local spatial averaging:
(x) = fG (x-x") uy (x') dx’ (58)

where G is a normalized weighting function, which may be called a filter. Its effect is to remove the small
scale fluctuations from u; in forming i, the large scale field, and ui', the subgrid scale field. A simple

choice is to let G = 1 within a cubic volume with sides of length A a centered at x and let G = O outside.
Then,

— l ! ! ' 1] ! !
u(x) = —A—g’—ffful (x1=%1", X9=X5', X3=X3") dx{" dx," dx3" - (59)
a

The integrations being from x1—1/2 A, to xp t 1/2 A, Xy = 1/2 A, to x5y + 1/2 A, and x3 - 1/2 A,
to x3 +1/2 A,.

The filtered counterparts of (1) and (2) can be obtained by multiplying (1) and (2) by the
weighting function G = 1 and integrating over the cubic volume v

T,
—=0 (60)
aXi
ou; —
i 0 __  0p y
e T e TPV ©h

ou. —
1 0 — ap 2 — 0
— et — U = = — + . m — ).
t o ax e 0x; YV s T 62)
where
771_1 = EI—J, + ui'—_j- + ui’uj’ s (63)

is the subgrid scale (SGS) Reynolds stress. Thusin LES one solves equations (60) and (62) together with

(63). Since the small scale component of the velocity field ui’ is not computed, the terms containing it
need to be modeled.
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Deardorff [136] and Schumann [137] employ a different approach to obtain LES equations.
The equations are set up for the grid employed based on integral conservation equations for each grid
volume. The form of the equations are the same as (60) and (62) if the overbar is interpreted as the
volume average. In this approach

T (64)
w=0 . (65)
as in the time-averaging process. This reduces the SGS Reynolds stress to
nij = uil uj' . (66)
ui'uj' is modeled by eddy viscosity models.
The model often used is that due to Smagorinsky [138],
aw ow \ fow  ow \ |2 fow ou
1 Y
uu = (CAa)2 LY RS ¥ L N R 67)
J 2 axj 0x; axj 0x; ij 0x;

where C is a constant which varies from 0.13 to 0.21. [When using the form (63), the term to be
modeled is still only u; uj' as the other terms can be taken care of by using equation (64) in equation

(61) which results in a modified pressure gradient term [139]].

The near wall treatment is crucial as in the time averaged Reynolds stress modeling. For a success-
ful LES simulation, one has to be able to resolve all the large eddies in the neighborhood of the wall
and at a distance from the wall, since the near wall eddies are responsible for the turbulent energy pro-
duction for the flow field. Moin and Kim [140] solve the LES equations up to the wall while Schumann
[137] and Deardorff [136] carry out the calculations only to a point in the logarithmic layer where
semi-empirical boundary conditions are used to near wall turbulence. In this approach the important
near wall turbulence flow dynamics is modeled which limits the use of LES approach to the understand-
ing of the flow physics.

The channel flow has been computed using the LES approach and found to reproduce experi-
mental observations such as the turbulent bursting sequence, production of longitudinal vortices in
boundary layers [138-140]. An example of the LES solution is shown in Figure 34. The figure shows
contours of instantaneous velocity, pressure fluctuations and SGS kinetic energy in a channel flow. Clark
et al. [141] evaluated the SGS Reynolds stress model constant and found that it agreed with the one
obtained from theory and experiment. Though it is expected that the LES and direct simulations can help to
improve the time averaged Reynolds stress modeling [139], no such improvement has ensued.
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9.3 Direct or Full Simulation

In this approach one solves the time dependent three-dimensional Navier-Stokes equations for
different scales of the flow (the smallest scale that can be resolved being determined by the number of
grid points). This approach has been used mainly to homogeneous flows at low Reynolds numbers (of
the order of Rt = 40), employing as much as 2 million grid points. Periodicity is assumed in all three

dimensions. The velocity field is represented at every instant by a three-dimensional Fourier series in a
coordinate system moving with the spatially linear mean flow [142]. In these coordinates the full
Navier-Stokes equations admit spatially periodic solutions with fixed period for all time. The representa-
tion of statistical homogeneity in space by strict periodicity requires that the computational period be
much longer than any turbulence scale containing significant energy. Also, the mesh size has to be much
smaller than the turbulence dissipation scales. A low turbulence Reynolds number is required to limit
the scales. With the present computer resources, only flows with a small range of energetic turbulence

scales can be computed [142].

Large eddy simulation and direct simulation are not expected to become engineering calculation
methods in the foreseeable future. However, these methods will help in the understanding of the physics

of turbulent flows.

X. CONCLUSIONS

The report presents a brief account of various turbulence closure models and their applications
to internal flows. A critical evaluation of the performance of the models is presented. The main con-

clusions are:

1. The k-e model is the most widely used model for internal flows. It provides an efficient
method of calculating engineering flows. The performance of the standard k-e model becomes poor as we
go from the attached flow, recirculating flow, swirl flow, to combusting flows in that order.

2. The standard k-e model performs poorly in the prediction of apparently simple flow over a
backward facing step. There is no significant improvement in the value of reattachment length predicted
with modified near-wall models. Algebraic stress model should be used with modified e-equation,

3. The k-e model performance is rather poor for flows with streamline curvature. Algebraic stress
model performs better for these flows.

4. Reynolds stress models have not been thoroughly tested for recirculating flows and swirl
flows. Computational effort required for RSM is much greater than that required for the k-¢ model.

5. For flows with regions of secondary flow (noncircular duct flows) algebraic stress model
performs fairly well for fully developed flow. For developing flow RSM should be employed.

6. In many computations, the grid dependence of the solutions has not been achieved or tested
due to the limitations of the computing resources. These solutions have to be taken with caution.
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7. The initial conditions play a crucial role in the performance of the model and predicted
solutions. Thus, use of appropriate initial conditions in the SSME flow computation is essential.

8. The TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) code [143] or its
variant is the most widely used computer code in the prediction of turbulent internal (plane 2D,
axisymmetric, 3-D, swirl and reacting) flows, cited in the literature.

X!. RECOMMENDATIONS

Based on the present evaluation, the following suggestions for future work can be made:

1. More work is necessary to arrive at a better numerical scheme for the solution of the model
equations.

2. A clear statement of the initial conditions employed should be mandatory for any presenta-

tion of the model predictions, especially when they are made ‘‘suitable” to match the experimental
results.

3. The use of ASM models for flows with streamline curvature appears promising and needs
further testing.

4. The use of the flux Richardson number for curved flows should be explored.

5. Detailed experimental data for curved flows with strong curvature are needed for the valida-
tion of the model predictions for these flows.

6. With the availability of more computing power, use of RSM models to account for curvature

effects, countergradient transport and secondary flows would improve the confidence in turbulence
closure models.

56




10.

I1.

12.

13.

14.

15.

16.

17.

REFERENCES

Bradshaw, P., (Ed.): Turbulence. Springer-Verlag, 1978.
Tennekes, H. and Lumley, J. L.: A First Course in Turbulence. The MIT Press, 1972.
Hinze, J. O.: Turbulence. McGraw-Hill, 1975.

Reynolds, W. C.: Computation of Turbulent Flows. Ann. Rev. Fluid Mech., vol. 8, 1976, pp.
183-208.

Bradshaw, P., Ferris, D. H., and Atwell, N, P.: Calculation of Boundary-Layer Development
Using the Turbulent Energy Equation. J. Fluid Mech., Vol. 28, 1967, pp. 593-616.

Cebeci, T., Chang, K. C., and Bradshaw, P.: Solution of Hyperbolic System of Turbulence-
Model Equations by the “Box” Scheme. Comput. Methods in Appl. Mech. Engr.,, Vol. 22,
1980, pp. 213-227.

Mellor, G. L. and Herring, H. J.: A Survey of the Mean Turbulent Field Closure Models. AIAA
J., Vol. 11, 1973, pp. 590-599.

Bradshaw, P.: The Understanding and Prediction of Turbulent Flow. Aero. J., Vol. 76, 1972,
pp. 403-417.

Launder, B. E. and Spalding, D. B.: Mathematical Models of Turbulence. Academic Press, Lon-
don, 1972,

Bradshaw, P. and Cebeci, T.: Engineering Calculation Methods. Academic Press, London, 1978.

Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B., and Wolfshtein, M.: Heat and Mass
Transfer in Recirculating Flows. Academic Press, London, 1969,

Launder, B. E. and Spalding, D. B.: Turbulence Models and Their Applications to the Prediction
of Internal Flows. Heat and Fluid Flow, Vol. 2, 1972, pp. 43-54.

Rotta, J. C.: Prediction Methods for Turbulent Flows. Von Karman Institute for Fluid Dynamics,
Lecture Series 76, 1975.

Lumley, J. L.: Computational Modeling of Turbulent Flows. Advances in Appl. Mech., Vol. 18,
1978, pp. 123-176.

Rodi, W.: Examples of Turbulence Models for Incompressible Flows. AIAA J., Vol. 20, 1982,
pp. 872-879.

Spalding, D. B.: Turbulence Models, a Lecture Course. Imperial College of Science and Tech-
nology, 1982,

Lumley, J. L.: Turbulence Modeling. J. App. Mech., 50th Anniversary Issue, 1983, pp. 1097-
1103.

57



18.

19.

20.

21.

22.

23.

24.

25.

26.

29.

30.

31

33.

34.

58

Marvin, J. G.: Turbulence Modeling for Computational Aerodynamics. AIAA J., Vol. 21, 1983,
pp. 941-955.

Murphy, J. D.: Turbulence Modeling. NASA TM 85889, 1984.

Donaldson, C. duP.: Calculation of Turbulent Shear Flows for Atmospheric and Vortex Motions.
AIAA 1., Vol. 10, 1972, pp. 4-12.

Launder, B. E. and Spalding, D, B.: The Numerical Computation of Turbulent Flows. Compu.
Methods in Appl. Mech. Engr., Vol. 3, 1974, pp. 269-289,

Schetz, J. A.: Injection and Mixing in Turbulent Flow. (Progress in Astronautics and Aeronautics,
Vol. 68), AIAA, New York, 1980,

Launder, B. E., Reecce, G. J., and Rodi. W.: Progress in the Development of a Reynolds Stress
Turbulence Closure. J. Fiuid Mech., Vol. 68, 1975, pp. 537-586.

Schumann, U.: Realizability of Reynolds Stress Turbulence Models. Phys. Fluids, Vol. 20, 1977,
pp. 721-725.

Rodi, W.: A New Algebraic Relation for Calculating the Reynolds Stresses. ZAMM, Vol. 56,
1976, pp. T219-T221.

Hanjalic, H., Launder, B. E., and Schistel, R.: Multiple-Time-Scale Concepts in Turbulent Trans-
port Modeling. Proc. Turbulent Shear Flows, 2, 1979, pp. 10.31-10.36.

Jones, W. P. and Launder, B. E.: The Prediction of Laminarization with a Two-Equation Model
of Turbulence. Int. J. Heat Mass Transfer, Vol. 5, 1973, pp. 301-314.

Chieng, C. C. and Launder, B. E.: On the Calculation of Turbulent Transport Downstream from
an Abrupt Pipe Expansion. Num. Heat Transfer, Vol. 3, 1980, pp. 189-207.

Amano, R. S.: Development of a Turbulence Near-Wall Model and Its Application to Separated
and Reattached Flows. Numerical Heat Transfer, Vol. 7, 1984, pp. 59-75.

lacovides, H. and Launder, B. E.: PSL — An Economical Approach to the Numerical Analysis
of Near-Wall, Elliptic Flow. J. Fluids Engineering, Vol. 106, 1984, pp. 241-242.

Launder, B. E.: Numerical Computation of Convective Heat Transfer in Complex Turbulent
Flows: Time to Abandon Wall Functions? Int. J. Heat Mass Transfer, Vol. 27, 1984, pp. 1485-
1491.

Bradshaw, P.: Effects of Streamline Curvature on Turbulent Flows. AGARDograph, No. 169,
1973.

Gibson, M. M.: An Algebraic Stress and Heat Flux Model for Turbulent Shear Flow with Stream-
line Curvature. Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1609-1617.

Pourahmadi, F. and Humphrey, J. A. C.: Prediction of Curved Channel Flow with an Extended
k-e Model of Turbulence, Vol. 21, 1983, pp. 1365-1373.




35.

36.

37.

38.

39.

40.

41.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52,

53.

Launder, B. E., Priddin, C. H., and Sharma, B. I.: The Calculation of Turbulent Boundary Layers
on Spinning and Curved Surfaces. J. Fluids Engineering, 1977, p. 231-239.

Militzer, J., Nicoll, W. B., and Alpay, J. A.: Some Observations on the Numerical Calculation of
the Recirculating Region of Twin Parallel Symmetric Jet flow. Proc. Symp. on Turbulent Shear

Flows. Pennsylvania State University, 1977, pp. 18.11-18.18.

Leschziner, M. A. and Rodi, W.: Calculation of Annular and Twin Parallel Jets Using Various
Discretization Schemes and Turbulence Model Variations. J. Fluids Engr., Vol. 103, 1981, pp.
352-360.

So, R. M. C.: Discussion on Reference 37 and Author’s Closure. J. Fluids Engr., Vol. 103,
1981, pp. 263-265.

Lilley, D. G.: Prediction of Inert Turbulent Swirl Flows. AIAA J., Vol. 1, 11,1973, pp. 955-960.

So, R. M. C.: Turbulence Velocity Scales for Swirling Flows, Turbulence in Internal Flows,
Project Squid Workshop, Hemisphere Publishing Corp., Washington, D.C., 1977.

Srinivasan, R., and Mongia, H. C.: Numerical Computation of Swirling Recirculating Flows.
Final Report, NASA CR-165196, 1980.

Rodi, W.: Influence of Buoyancy and Rotation on Equations for the Turbulent Length Scale.
Proc. 2nd Symp. on Turbulent Shear Flows. London, Imperial College, 1979, pp. 10.37-10.42.

Kline, S. J., Cantwell, B. J., and Lilley, G. M. (Ed.): The 1980-1981 AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows, Stanford University, I, II, and III.

Mansour, N. N. and Morel, T.: ibid III, pp. 1418-1423,

Pollard, A.: ibid III, pp. 1486-1490,

Rodi, W, et al.: ibid IlI, pp. 1495-1516.

Launder, B. E., et al.: ibid III, pp. 1390-1407.

Spalding, D. B.: et al.: ibid III, pp. 1521-1526.

Demirdzic, I., Gosman, A. D., and Issa, R. I.: ibid III, pp. 1383-1389.
Donaldson, C. duP., et al.: ibid II, pp. 1342-1345.

Ilegbusi, J. O. and Spalding, D. B.: Turbulent Flow Downstream of a Backward Facing Step.
Proc. 4th Int. Symposium on Turbulent Shear Flows, Karlsruhe, 1983.

Nallsamy, M.: Computation of Recirculating Flows Using PHOENICS code. In progress 1985.

Syed, S. and Chiappetta, L.: Finite Difference Methods for Reducing Numerical Diffusion in
Teach-Type Calculations. AIAA Paper, AIAA-85-0056, 1985,

59



54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

60

Kim. J., Kline, S., and Johnston, J.: Investigation of Separation and Reattachment of a Turbu-
lent Shear Layer, Flow Over a Backward Facing Step. Report MD.37, Mech. Eng. Stanford
University.

Tropea, C. and Durst, F.: Evaluators Comment. 1981 AFOSR-HTTM-Stanford Conference on
Complex Turbulent Flows, 1981.

Launder, B. E.: 1981-Stanford Conference on Complex Turbulent Flows: Computation and
Experiment, Vol. II, pp. 843-862.

Pope, S. B.: An Explanation of the Turbulent Round Jet/Plane Jet Anomaly. AIAA J., Vol
16, 1978, pp. 279-281.

Wood, P. E. and Chen, C. P.: Turbulence Model Predictions of the Radial Jet — A Comparison
of k-e Models. Can. J. Ch. E., in press, 1985.

Gosman, A. D., Khalil, E. E., and Whitelaw, J. H.: The calculation of Two-Dimensional Turbu-
lent Recirculating Flows. Turbulent Shear Flows, Vol. 2, 1980, pp. 237-255.

Abbott, D. E. and Kline, S. J.: Experimental Investigation of Subsonic Turbulent Flow Over Single
and Double Backward Facing Steps. J. Basic Eng., Vol. 84, 1962, pp. 317-325.

Durst, F. and Rastogi. A. K.: Theoretical and Experimental Investigations of Turbulent Flows
with Separation. Turbulent Shear Flow, Vol. 2, 1980, pp. 208-219.

Qin, H.: The Flow Characteristic of a Sudden Axisymmetric Expansion. PDR/CPDU IC/4,
Imperial College of Science and Technology, London, 1984.

Ha Minh, H. and Chassaing, P.: Perturbation of Turbulent Pipe Flow. Turbulent Shear Flow,
Vol. 3, 1981, pp. 178-197.

Moon, L. F. and Rudinger, G.: Velocity Distribution in an Abruptly Expanding Circular Duct.
J. Fluids Engineering, 1977, pp. 226-230.

Chen, C. P.: Flow in a Pipe Expansion. Effect of Inlet Swirls, to be published,

Amano, R. S.: A Study of Turbulent Flow Downstream of an Abrupt Pipe Expansion. AIAA J,,
Vol. 21, 1983, pp. 1400-1405.

Amano, R. S. and Goel, P.: A Numerical Study of a Separating and Reattaching Flow by Using
Reynolds Stress Turbulence Closure. Num. Heat Transfer, Vol. 7, 1984, pp. 343-357.

Back, L. H. and Roschke, E. J.: Shear Layer Flow Regimes and Wall Instabilities and Reattach-
ment Lengths Downstream of an Abrupt Circular Channel Expansion. J. Appl. Mech., Vol. 94,
1972, pp. 677-681.

Chaturvedi, M. C.: Flow Characteristics of an Axisymmetric Expansion. J. Hyd. Div., Proc.
ASCE, Vol. 89, 1963, pp. 61-92,

Pope, S. B. and Whitelaw, J. H.: The Calculation of Near Wake Flows. J. Fluid Mech., Vol. 73,
1976, pp. 9-32.




71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Habib, M. A. and Whitelaw, J. H.: Velocity Characteristics of a Confined Coaxial Jet. J. Fluids
Engineering, Vol. 101, 1979, pp. 521-5209.

Habib, M. A. and Whitelaw, J. H.: Velocity Characteristics of Confined Coaxial Jets With and
Without Swirl. J. Fluid Engineering, Vol. 102, 1980, pp. 47-53.

Habib, M. A. and Whitelaw, J. H.: The Calculation of Turbulent Flow in Wide-Angle Diffusers. .
Num. Heat Transfer, Vol. 5, 1982, pp. 145-164.

Rhode, D. L., Lilley, D. G., and McLaughlin, D. K.: On The Prediction of Swirling Flow Fields
Found in Axisymmetric Combustor Geometries. J. Fluids Engineering, Vol. 104, 1982, pp.
378-392.

Honami, S., Ariga, I, Abe, T., and Watonabe, I.. Investigation of Turbulent Flows in Curved
Channel Flows. ASME Paper 75-FE-32, 1975.

Ellis, L. B. and Joubert, P. N.: Turbulent Shear Flow in a Curved Duct. J. Fluid Mech., Vol.
62, 1974, pp. 65-84.

Towne, C. E.: Computation of Viscous Flow in Curved Ducts and Comparison with Experi-
mental Data. AIAA Paper No. ATAA-84-0531, 1984,

Mukerjee, T., Singhal, A. K., Tam, L. T., Costes, N. C., and Fichtl, G. H.: Analysis of Turbulent
Flow and Heat Transfer in SSME Turnaround Ducts, to be submitted, 1985.

Owens, S. F., Mukerjee, T., Przekwas, A. J., Singhal, A. K., and Costes, N. C.: Analysis of Tur-
bulent, Compressible Flow in Hot Gas Manifold (Phase 2 — Design) of Space Shuttle Main Engine.
To be submitted to J. of Spacecraft and Rockets, 1985,

Agarwal, Y., Talbot, L., and Grong, K.: Laser Anemometer Study of Flow Development in
Curved Circular Pipes. J. Fluid Mech., Vol. 85, 1978, pp. 497-518.

Nuttal, J. B., Axial Flow in a Vortex. Nature, Vol. 172, 1953, pp. 582-583.
Gupta, A. K., Lilley, D. G., Syred, N.: Swirl Flows, ABACUS Press, 1984,

Jones, W. P. and Whitelaw, J. H.: Calculation Method for Reacting Turbulent Flows: A Review.
Combustion and Flame, Vol. 48, 1982, pp. 1-26.

Novick, A. S., Miles, G. A., and Lilley, D. G.: Numerical Simulation of Combustor Flow Fields:
A Primitive Variable Design Capability., J. Energy, Vol. 3, 1979, pp. 95-105.

Novick, A. S., Miles, G. A., and Lilley, D. G.: Modeling Parameter Influences in Gas Turbine
Combustor Design. J. Energy, Vol. 3, 1979, pp. 257-262.

Ramos, J. I.: Turbulent Nonreacting Swirling Flows. AIAA J., Vol. 22, 1983, pp. 846-848.

Sturgess, G. J., Syed, S. A., and McManus, K. R,: Importance of Inlet Boundary Conditions for
Numerical Simulation of Combustor Flows. AIAA Paper, No. AIAA-83-1263.

61



88.

89.

90.

91.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

62

Boysan, F. and Swithenbank, J.: Discussion on the Paper by Rhode et al. [64]. J. Fluids Engin-
eering, Vol. 104, 1982, pp. 391-392.

Escudier, M. P., Bronstein, J., and Zehnder, N.: Observations and LDA measurements of Confined
Vortex Flow. J. Fluid Mech., Vol. 98, 1980, pp. 49-63.

Dixon, T. F., Truelove, J. S., and Wall, T. F.: Aerodynamic Studies on Swirled Coaxial Jets from
Nozzles with Divergent Quarls. J. Fluids Engineering, Vol. 105, 1983, pp. 197-203.

Boysan, F., Ayers, W. H., and Swithenbank, J.: A Fundamental Mathematical Modeling Approach
to Cyclone Design. Trans. I. Chem. E., Vol. 60, 1982, pp. 223-230.

Speziale, C. G.: On Turbulent Secondary Flows in Pipes of Noncircular Cross-Section. Int. J.
Engr. Sci., Vol. 20, 1982, pp. 861-872.

Launder, B. E. and Ying, W. M.: Prediction of Flow and Heat Transfer in Ducts of Square Cross
Section. Heat and Fluid Flow, Vol. 3, 1973, pp. 115-121.

Hanjalic, K. and Launder, B. E.: A Reynolds Stress Model of Turbulence and Its Application to
Thin Shear Flows. J. Fluid Mech., Vol. 52, 1972, pp. 609-638.

Gosman, A. D. and Rapley, C. N.: The Analysis of Fully Developed Turbulent Flow Through
Non-Circular Passages. Paper No. FS178, Proc. of Int. Conf. on Numerical Methods, 1978.

Launder, B. E. and Ying, W. M.: Secondary Flows in Ducts of Square Cross Section. J. Fluid
Mech., Vol. 54, 1972, pp. 289-295.

Reece, G. A.: A Generalized Reynolds Stress Model of Turbulence. Ph.D. Thesis, University of
London, 1976.

Noat, D., Shavit, A., and Wolfshtein, M.: Numerical Calculation of Reynolds Stresses in a Square
Duct with Secondary Flow. Warme-und-Stoffubentragnug, Vol. 7, 1974, pp. 151-161.

Brundrett, E. and Baines, W. D.: The Production and Diffusion of Vorticity in Duct Flows.
J. Fluid Mech., Vol. 19, 1964, pp. 375-394.

Nakayama, A., Chow, W. L., and Sharma, D.: In the 1980-81 AFOSR-HTTM Stanford Confer-
ence on Complex Turbulent Flows, Vol. III, pp. 1312-1317.

Coustiex, J., et al.: In the 1980-81 AFOSR-HTTM Stanford Conference on Complex Turbulence
Flows, Vol. 111, pp. 1326-1336.

de Vahl Davis, G. and Mallinson, G. D.: An Evaluation of Upwind and Central Difference
Approximations by a Study of Recirculating Flow. Computers and Fluids, 1976, pp. 29-37.

Raithby, G. D.: A Critical Evaluation of Upstream Differencing Applied to Problems Involving
Fluid Flow. Comp. Meths. Appl. Mech. Eng., Vol. 9, 1976, pp. 75-103.

McGuirk, J. J., Taylor, A. M. K. P., and Whitelaw, J. H.: The Assessment of Numerical Diffusion
in Upwind Difference Calculations. Turbulent Shear Flow 2, 1980, pp. 206-224.




105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Raithby, G. D.: Skew Upwind Differencing Schemes for Problems Involving Fluid Flow. Comp.
Meths. Appl. Mech. Eng., Vol. 9, 1976, pp. 153-165.

Leschziner, M. A.: Practical Evaluation of Three Finite Difference Schemes for the Computation
of Steady State Recirculating Flows, Comp. Meth. Appl. Mech. Eng., Vol. 23, 1980, pp. 293-312.

Leschziner, M. A. and Rodi, W.: Computation of Strongly Swirling Axisymmetric Free Jets.
AIAA J., Vol. 22, 1984, pp. 1742-1747.

Syed, S. A. and Sturgess, G. J.: In Momentum and Heat Transfer Processes in Recirculating
Flows. ASME HTD 13, 1980, p. 71.

Roback, R. and Johnson, B. V.: Mass and Momentum Turbulent Transport Experiments with
Confined Swirling Coaxial Jets. NASA CR-168252, 1983.

Johnson, B. V. and Bennett, J. C.: Mass and Momentum Turbulent Transport Experiments with
Confined Coaxial Jets. NASA CR-165574, 1981.

Beguier, C., Giralt, F., Fulachier, L., and Keffer, J. F.: Negative Production in Turbulent Shear
Flows. In. Lecture Notes in Physics, Vol. 76, 1978, pp. 22-35.

Townsend, A. A.: The Structure of Turbulent Shear Flows. Cambridge University Press, 1976.

Hinze, J. O.: Turbulent Flow Regions with Shear Stress and Mean Velocity Gradient of Opposite
Sign. J. App. Sci. Res., Vol. 22, 1970, pp. 163-175.

Brown, G. L. and Roshko, A.: On Density Effects and Large Structure in Turbulent Mixing
Layers. J. Fluid Mech., Vol. 64, 1974, pp. 775-816.

Winant, C. D. and Browand, F. K.: Vortex Pairing: A Mechanism of Turbulent Mixing Layer
Growth at Moderate Reynolds Number. J. Fluid Mech., Vol. 63, 1974, pp. 237-255.

Nallasamy, J. and Hussain, A. K. M. F.: Response of the Axisymmetric Mixing Layer to Sub-
harmonic Forcing at Different Amplitudes. Proc. 8th Biennial Turbulence Symposium, Rolla,

1983.

Oster, D. and Wygnanski, I.: The Forced Mixing Layer Between Parallel Streams. J. Fluid Mech.,
Vol. 123, 1982, pp. 91-130.

Libby, P. A. and Bray, K. N, C.: Implications of Laminar Flamlet Model in Pre-Mixed Turbulent
Combustion. Combustion and Flame, Vol. 39, 1980, pp. 33-41.

Libby, P. A. and Bray, K. N. C.: Countergradient Diffusion in Premixed Turbulent Flames.
AIAA J., Vol. 19, 1981, pp. 205-213.

Favre, A.: Equations des gas Turbulents Compressibles. J. Mechanique, Vol. 4, 1965, p. 361.

Spalding, D. B.: The Two-Fluid Model of Turbulence Applied to Combustion Phenomena. AIAA
Paper No. AIAA-84-0476, 1984.

63



122.

123.

124.

125.

129.

130.

131.

133.

134.

135.

136.

137.

138.

64

Spalding, D. B.: A General Purpose Computer Programme for Multi-Dimensional One and Two
Phase Flow, Mathematics and Computers in Simulation. North Holland Press, Vol. XXIII, 1981,
pp. 267-276.

Patankar, S. V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

Saffman, P. G. and Baker, G. R.: Vortex Interactions. Ann. Rev. Fluid Mech., Vol. 11, 1976,
pp. 95-122.

Leonard, A.: Vortex Methods for Flow Simulation. J. Comp. Physics, Vol. 37, 1980, pp. 289-
335.

Aref, H.: Integrable, Chaotic, and Turbulent Vortex Motion in Two-Dimensional Fluid Flows.
Ann. Rev. Fluid Mech., Vol. 15, 1983, pp. 345-389.

Acton, E.: A Modelling of Large Eddies in an Axisymmetric Jet. J. Fluid Mech., Vol. 98, 1980,
pp. 1-31.

Nallasamy, M. and Hussain, A. K. M. F.: Numerical Study of the Phenomenon of Turbulence
Suppression in a Plane Shear Layer. Turbulent Shear Flows, Vol. 4, 1984, pp. 169-181.

Nallasamy, M. and Hussain, A. K. M. F.: Numerical Simulation of “Flapping” and “Puffing”
Instabilities in a Plane Jet. To be published.

Chorin, A. J.: Numerical Study of Slightly Viscous Flow. J. Fluid Mech., Vol. 57, 1973, pp.
785-796.

Chorin, A. J.: Flame Advection and Propagation Algorithms. J. Comput. Phys., Vol. 35, 1980,
p. 1-11. See also: The Evolution of a Turbulent Vortex, Commun. Math. Phys., Vol. 83, 1982,
pp. 526-527.

Ghoniem, A. F., Chorin, A. J., and Oppenheim, A. K.: Numerical Modeling of Turbulent Flow
in a Combustion Tunnel. Phil. Trans. Roy. Soc. London, Ser. A, Vol. 304, 1982, pp. 303-325.

Beljaars, A. C. M., Krishna Prasad, K., and de Vries, D. A.: A Structural Model for Turbulent
Exchange in Boundary Layers. Vol 112, 1981, pp. 33-70.

Dai, Y. W., Ghoniem, A. F., Sherman, F. S., and Oppenheim, A. K.: Numerical Modeling of
Turbulent Flow in a Channel. NASA CR-168278, 1983.

Leonard, A.: Energy Cascade in Large Eddy Simulations of Turbulent Fluid Flows. Adv. in
Geophys., Vol. 18A, 1973, pp. 237-247.

Deardorff, J. W.: A Numerical Study of Three-Dimensional Turbulent Flow at Large Reynolds
Numbers. J. Fluid Mech., Vol. 41, 1970, pp. 453-480.

Schumann, U.: Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in
Plane Channcls and Annuli. J. Comp. Physics, Vol. 18, 1975, pp. 376-404.

Smagorinsky, J.:  General Circulation Experiments with Primitive Equations: 1. The Basic Experi-
ment. Mon. Weath. Rev., Vol. 91, 1963, pp. 99-164.




139.

140.

141.

142.

143.

Ferzieger, J. H.: Higher Level Simulation of Turbulent Flows. In “Computational Methods for
Turbulent, Transonic and Viscous Flows.” Ed. J. A. Eassers, Hemisphere/Springer, 1983, pp.

93-182.

Moin, P. and Kim, J.: Numerical Investigation of Turbulent Channel Flows. J. Fluid Mech.,

Vol. 118, 1981, pp. 341-377.

Clark, R. A., Ferzieger, J. H., and Reynolds, W. C.:  Evaluation of Subgrid-Scale Models Using an
Accurately Simulated Turbulent Flow. J. Fluid Mech., Vol. 91, 1970, pp. 1-16.

Rogallo, R. S.: Numerical Experiments in Homogeneous Turbulence. NASA TM-81315, 1981.

Gosman, A. D. and Pun, W. M.: Calculation of Recirculating Flows.
1974, Dept. of Mechanical Engineering, Imperial College, London, England.

Rept. No. HTS/74/12,

65



TECHNICAL REPORT STANDARD TITLE PAGE

. REPORT NO. 2. GOVERNMENT ACCESS!ION NO. 3. RECIPIENT’S CATALOG NO.
NASA TP- 2474
. TITLE AND SUBTITLE 5. REPORT DATE
May 1985

A Critical Evaluation of Various Turbulence Models
as Applied to Internal Fluid Flows

6, PERFORMING ORGANIZATION CODE

. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT #
M. Nallasamy
PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.
. M-486
George C. Marshall Space Flight Center 11. CONTRACT OR GRANT NO.

Marshall Space Flight Center, Alabama 35812

12.

SPONSORING AGENCY NAME AND ADDRESS

. . .. . Technical P
National Aeronautics and Space Administration echnical taper

13. TYPE OF REPORY & PERIOD COVERED

. ;, -
Washington, D.C. 20546 14. SPONSORING AGENCY CODE

15.

SUPPLEMENTARY NOTES

Prepared by Systems Dynamics Laboratory, Science and Engineering Directorate.

18,

ABSTRACT

The report presents a brief account of various turbulent models employed in the computation of
turbulent flows, and evaluates the application of these models to internal flows by examining the pre-
dictions of various turbulence models in selected important flow configurations. The main conclusions
of this analysis are: (a) The k-¢ model is used in a majority of all the two-dimensional flow calculations
reported in the literature. (b) Modified forms of the k-¢ model improve the performance for flows with
streamline curvature and heat transfer. (¢) For flows with swirl, the k-¢ model performs rather poorly;
the algebraic stress model performs better in this case. (d) For flows with regions of secondary flow
(noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow. For
developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be
used.

Two important factors in the numerical solution of the model equations, namely false diffusion
and inlet boundary conditions, are discussed. The existence of countergradient transport and its implica-
tions in turbulence modeling are mentioned. Two examples of recirculating flow predictions obtained
using PHOENICS code are discussed. Other approaches to turbulent flow computations, such as the
vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simula-
tion, are briefly discussed. Finally, some recommendations for improving the model performance are
made. The need for detailed experimental data in flows with strong curvature is emphasized.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Turbulent Flow Unclassified - Unlimited

Internal Flow

Turbulence Models

Computational Fluid Dynamics

Subject Category 34
19. SECURITY CLASSIF. (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES | 22, PRICE
Unclassified Unclassified 70 AO4

For sale by National Technical Information Service, Springfield, Virginia

NASA-Langley, 1985

22161



K
|
L
L
~
i

A

" National- Aeronautics and . THIRD-CLASS BULK RATE . ‘Postage snd Fees Paid -
- Space Administration ' ) e : ‘ - Nationai Aeronautics and -
< pa \ : o 5 ) Space Administration
KoL o SER : NASA4E1 - .
.-~ Washingtoen, D.C. . = . -~ ’ e - )
. Official Business- - : . .
Ui Penalty for Private Use, $300, Lo , h A
< . }\‘ ‘ ,\— B | *,7 ‘,; ‘ } ’- e ( '\.\‘ - 4
N - - ‘ A ‘
- ( ~ ' \ ~*
BTt ‘ : N ! N ' ‘ - , Co . ’ \
é’ i ’v(‘ ) N y’ B / . .-“., (s ¢ v ‘
RO ) B A ‘ ‘ 2 ° N
N o - ' | - .
R S S . j
. o . ﬁ L ) . ‘;\‘ - ) . . \‘.\
2 . . N . L N : .
POSTMASTER: If Undeliverable (Section 158
. : o TFASTER' .. Postal Manusl) Do Not Return -
: ~ (/ < \ X N - .
al — y '
; N
P - N ‘f & = v ] “~
o , SRS : , - K
|
‘\v,‘ y‘) N N N Al
LT o ~ B N
A RO R
i E
A
i ' K '
. x )
- ‘ > ™ S ¥
« /\ ’ . - . .
no \ ‘ ‘J. 7 ) \ ‘ ) “ . N A . -
- { S | 3 ’ o .
7 o ) . Y N 1. R




